Skip to main content
Top
Published in: Continuum Mechanics and Thermodynamics 3/2023

25-04-2022 | Original Article

Experimental methods of living cells mechanical loading: review

Authors: Natalia Branecka, Tomasz Lekszycki

Published in: Continuum Mechanics and Thermodynamics | Issue 3/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Studying the effects of mechanical loads on living cells provides valuable information about their activity, vitality and intercellular communication. Mechanical stimuli have often a significant impact on cell migration, tissue remodeling and healing and other phenomena. This effects in micro scale affect also tissue structure, its mechanical characteristics and functionality. Special methods are needed to study deformation and biological responses of such small objects as cells. Moreover, in order to keep the cells alive during such tests, it is necessary to ensure appropriate environmental conditions. The methods of loading and examination cells can be categorized into several groups depending on the physical effects used in experiment. This paper provides a systematic review of the methods used in such studies and examples of mathematical modeling the mechanical response of cells to mechanical loads. Such models enable computational simulation of changes in cells and tissues excited by mechanical stress.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Andreaus, U., Colloca, M., Iacoviello, D.: Optimal bone density distributions: numerical analysis of the osteocyte spatial influence in bone remodeling. Comput. Methods Prog. Biomed. Strony 113, 80–91 (2014)CrossRef Andreaus, U., Colloca, M., Iacoviello, D.: Optimal bone density distributions: numerical analysis of the osteocyte spatial influence in bone remodeling. Comput. Methods Prog. Biomed. Strony 113, 80–91 (2014)CrossRef
3.
go back to reference Andreaus, U., Colloca, M., Iacoviello, D. Pignataro.: Optimal-tuning PID control of adaptive materials for structural efficiency. Struct. Multidis. Optimiz. (2011) Andreaus, U., Colloca, M., Iacoviello, D. Pignataro.: Optimal-tuning PID control of adaptive materials for structural efficiency. Struct. Multidis. Optimiz. (2011)
4.
go back to reference Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. (1986) Ashkin, A., Dziedzic, J. M., Bjorkholm, J. E. Chu, S.: Observation of a single-beam gradient force optical trap for dielectric particles. Opt. Lett. (1986)
5.
go back to reference Barazani, B., Warnat, S., Fine, A. Hubbard, T.: MEMS squeezer for the measurement of single cell rupture force, stiffness change, and hysteresis. Journal of Micromechanics and Microengineering (2017) Barazani, B., Warnat, S., Fine, A. Hubbard, T.: MEMS squeezer for the measurement of single cell rupture force, stiffness change, and hysteresis. Journal of Micromechanics and Microengineering (2017)
6.
go back to reference Basso, N. Heerschie, J. N.: Characteristics of In Vitro Osteoblastic Cell Loading Models. Bone (2002) Basso, N. Heerschie, J. N.: Characteristics of In Vitro Osteoblastic Cell Loading Models. Bone (2002)
7.
go back to reference Bhattacharjee, N., Urrios, A., Kang, S. Folch, A.: The upcoming 3D-printing revolution in microfluidics. Lab Chip, pp. 1711-1948 (2016) Bhattacharjee, N., Urrios, A., Kang, S. Folch, A.: The upcoming 3D-printing revolution in microfluidics. Lab Chip, pp. 1711-1948 (2016)
8.
go back to reference Capitanio, M., Pavone, F.S.: Single Molecule High-Resolution Measurements with Optical Tweezers. Biophysical Journal, strony, Interrogating Biology with Force. pp. 1293–1303. (2013) Capitanio, M., Pavone, F.S.: Single Molecule High-Resolution Measurements with Optical Tweezers. Biophysical Journal, strony, Interrogating Biology with Force. pp. 1293–1303. (2013)
9.
go back to reference Chen, J., Abdelgawad, M., Yu, L., Shakiba, N., Chien, W.-Y., Lu, Z., Sun, Y.: Electrodeformation for single cell mechanical characterization. J. Micromech. Microeng. (2011) Chen, J., Abdelgawad, M., Yu, L., Shakiba, N., Chien, W.-Y., Lu, Z., Sun, Y.: Electrodeformation for single cell mechanical characterization. J. Micromech. Microeng. (2011)
10.
go back to reference Corbin, E., Kong, F., Lin, C. T., King, W. Bashir, R.: Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy. Lab on a Chip, 839-847 (2015) Corbin, E., Kong, F., Lin, C. T., King, W. Bashir, R.: Biophysical properties of human breast cancer cells measured using silicon MEMS resonators and atomic force microscopy. Lab on a Chip, 839-847 (2015)
11.
go back to reference Daily, B., Elson, E. L. Zahalak, G. I.: Cell poking: Determination of the Elastic Area Compressibility Modulus of the Erythrocyte Membrane. Biophys. J. (1984) Daily, B., Elson, E. L. Zahalak, G. I.: Cell poking: Determination of the Elastic Area Compressibility Modulus of the Erythrocyte Membrane. Biophys. J. (1984)
12.
go back to reference Dao, M., Lim, C. T. Suresh, S.: Mechanics of the human red blood cell deformed by optical tweezers. Journal of the Mechanics and Physics of Solids (2003) Dao, M., Lim, C. T. Suresh, S.: Mechanics of the human red blood cell deformed by optical tweezers. Journal of the Mechanics and Physics of Solids (2003)
13.
go back to reference Davis, C. A., Zambrano, S., Anumolu, P., Allen, A. C., Sonoqui, L. Moreno, M. R.: Device-based in vitro techniques for mechanical stimulation of vascular cells: a review. J. Biomech. Eng. (2015) Davis, C. A., Zambrano, S., Anumolu, P., Allen, A. C., Sonoqui, L. Moreno, M. R.: Device-based in vitro techniques for mechanical stimulation of vascular cells: a review. J. Biomech. Eng. (2015)
14.
go back to reference Ding, X., Lin, S.-C. S., Kiraly, B., Yue, H., LiSixing, Chiang, I.-K., Huang, T. J.: On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. PNAS (2012) Ding, X., Lin, S.-C. S., Kiraly, B., Yue, H., LiSixing, Chiang, I.-K., Huang, T. J.: On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves. PNAS (2012)
15.
go back to reference Dufrene, Y. F., Evans, E., Engel, A., Helenius, J., Gaub, H. E. Muller, D. J.: Five challenges to bringing single-molecule force spectroscopy into lining cells. Nature Methods (2011) Dufrene, Y. F., Evans, E., Engel, A., Helenius, J., Gaub, H. E. Muller, D. J.: Five challenges to bringing single-molecule force spectroscopy into lining cells. Nature Methods (2011)
16.
go back to reference Ferrier, G.M., McEvoy, A., Evans, C.E., Andrew, J.G.: The effect of cyclic pressure on human monocyte-derived macrophages in vitro, The journal of bone and joint surgery (2000) Ferrier, G.M., McEvoy, A., Evans, C.E., Andrew, J.G.: The effect of cyclic pressure on human monocyte-derived macrophages in vitro, The journal of bone and joint surgery (2000)
17.
go back to reference Gonzalez-Bermudez, B., Guinea, G.V., Plaza, G.R.: Advances in micropipette aspiration: applications in cell biomechanics, models, and extended studies. Biophys. J. 116, 587–594 (2019)CrossRefADS Gonzalez-Bermudez, B., Guinea, G.V., Plaza, G.R.: Advances in micropipette aspiration: applications in cell biomechanics, models, and extended studies. Biophys. J. 116, 587–594 (2019)CrossRefADS
18.
go back to reference Gosse, C., Croquette, V.: Czerwiec). Micromanipulation and Force Measurement at the Molecular Level. Biopfysical Journal, Magnetic Tweezers (2002) Gosse, C., Croquette, V.: Czerwiec). Micromanipulation and Force Measurement at the Molecular Level. Biopfysical Journal, Magnetic Tweezers (2002)
19.
go back to reference Gourier, C., Jegou, A., Husson, J. Pincet, F.: A Nanospring Named Erythrocyte. The Biomembrane Force Probe. Cellular and Molecular Bioengineering, strony 263-275 (2008) Gourier, C., Jegou, A., Husson, J. Pincet, F.: A Nanospring Named Erythrocyte. The Biomembrane Force Probe. Cellular and Molecular Bioengineering, strony 263-275 (2008)
20.
go back to reference Guck, J., Ananthakrishnan, R., Mahmood, H., Cunningham, C., Kas, J.: Sierpień). A novel laser tool to micromanipulate cells. Biophys. J., Opt. Stretcher (2001) Guck, J., Ananthakrishnan, R., Mahmood, H., Cunningham, C., Kas, J.: Sierpień). A novel laser tool to micromanipulate cells. Biophys. J., Opt. Stretcher (2001)
21.
go back to reference Guck, J., Ananthakrishnan, R., Moon, T. J., Cunningham, C. C. Kas, J.: Optical deformability of soft biological dielectrics. Phys. Rev. Lett. (2000) Guck, J., Ananthakrishnan, R., Moon, T. J., Cunningham, C. C. Kas, J.: Optical deformability of soft biological dielectrics. Phys. Rev. Lett. (2000)
22.
go back to reference Hochmuth, R. M.: Micropipette aspiration of living cells. J. Biomech. (33) (2000) Hochmuth, R. M.: Micropipette aspiration of living cells. J. Biomech. (33) (2000)
23.
go back to reference Howard, J.: Mechanics of motor proteins and the cytoskeleton. Sinauer (2001) Howard, J.: Mechanics of motor proteins and the cytoskeleton. Sinauer (2001)
25.
go back to reference Instruments, J.P.K.: Determining the elastic modulus of biological samples using atomic force microscopy. JPK Instruments, Berlin (2019) Instruments, J.P.K.: Determining the elastic modulus of biological samples using atomic force microscopy. JPK Instruments, Berlin (2019)
26.
go back to reference Ju, L., Chen, Y., Li, K., Yuan, Z., Liu, B., Jackson, S. P. Zhu, C.: Dual Biomembrane Force Probe enables single-cell mechanical analysis of signal crosstalk between multiple molecular species. 2017: Nature Scientific Reports Ju, L., Chen, Y., Li, K., Yuan, Z., Liu, B., Jackson, S. P. Zhu, C.: Dual Biomembrane Force Probe enables single-cell mechanical analysis of signal crosstalk between multiple molecular species. 2017: Nature Scientific Reports
27.
go back to reference Kim, D.-H., Haake, A., Sun, Y., Neild, A., Ihm, J.-E., Dual, J., Nelson, B.: High-Throughput Cell Manipulation Using Ultrasound Fields. Proceedings of the 26th Annual International Conference of the IEEE EMBS. San Francisco (2004) Kim, D.-H., Haake, A., Sun, Y., Neild, A., Ihm, J.-E., Dual, J., Nelson, B.: High-Throughput Cell Manipulation Using Ultrasound Fields. Proceedings of the 26th Annual International Conference of the IEEE EMBS. San Francisco (2004)
28.
go back to reference Kocemba, I.: Mikrosystemy Lab-on-a-Chip. Lab Story (2019) Kocemba, I.: Mikrosystemy Lab-on-a-Chip. Lab Story (2019)
29.
go back to reference Li, Y.-J., Yang, Y.-N., Zhang, H.-J., Xue, C.-D., Zeng, D.-P., Cao, T. Qin, K.-R.: A microfluidic micropipette aspiration device to study single-cell mechanics inspired by the principle of wheatstone bridge. Micromachines, 10 (2019) Li, Y.-J., Yang, Y.-N., Zhang, H.-J., Xue, C.-D., Zeng, D.-P., Cao, T. Qin, K.-R.: A microfluidic micropipette aspiration device to study single-cell mechanics inspired by the principle of wheatstone bridge. Micromachines, 10 (2019)
30.
go back to reference McConnaughey, W. B. Petersen, N. O. Cell poker: An apparatus for stress-strain measurements on living cells. Rev. Sci. Instruments (1980) McConnaughey, W. B. Petersen, N. O. Cell poker: An apparatus for stress-strain measurements on living cells. Rev. Sci. Instruments (1980)
31.
go back to reference Nawaz, S., Sanchez, P., Bodensiek, K., Li, S., Simos, M., Schaap, I.: October). Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations, Plos One (2012) Nawaz, S., Sanchez, P., Bodensiek, K., Li, S., Simos, M., Schaap, I.: October). Cell visco-elasticity measured with AFM and optical trapping at sub-micrometer deformations, Plos One (2012)
32.
go back to reference Neuman, K. C. Nagy, A.: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, strony pp. 491-505 (2008) Neuman, K. C. Nagy, A.: Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nature Methods, strony pp. 491-505 (2008)
33.
go back to reference Polacheck, W., Li, R., Uzel, S. Kamm, R.: Microfluidic platforms for mechanobiology. Lab Chip, pages 2252-2267 (2013) Polacheck, W., Li, R., Uzel, S. Kamm, R.: Microfluidic platforms for mechanobiology. Lab Chip, pages 2252-2267 (2013)
34.
go back to reference Potier, E., Noailly, J. Ito, K. Directing bone marrow-derived stromal cell function with mechanics. J. Biomech. strony pp. 807-817 (2010) Potier, E., Noailly, J. Ito, K. Directing bone marrow-derived stromal cell function with mechanics. J. Biomech. strony pp. 807-817 (2010)
35.
go back to reference Puig de Morales, M., Grabulosa, M., Alcatraz, J., Mullol, J., Maksym, G., Fredberg, J. Navajas, D.: Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation. J. Appl. Phys. (2001) Puig de Morales, M., Grabulosa, M., Alcatraz, J., Mullol, J., Maksym, G., Fredberg, J. Navajas, D.: Measurement of cell microrheology by magnetic twisting cytometry with frequency domain demodulation. J. Appl. Phys. (2001)
36.
go back to reference Rajagopal, V., Holmes, W. R. Vee Sin Lee, P. Computational modeling of single-cell mechanics and cytoskeletal mechanobiology. WIREs Systems Biology and Medicine, 10 (2018) Rajagopal, V., Holmes, W. R. Vee Sin Lee, P. Computational modeling of single-cell mechanics and cytoskeletal mechanobiology. WIREs Systems Biology and Medicine, 10 (2018)
37.
go back to reference Rodahl, M., Hook, F., Krozer, A., Brzezinski, P. Kasemo, B.: Quartz crystal microbalance setup for frequency and G-factor rneasurements in gaseous and liquid environments. Rev. Sci. Instruments (1995) Rodahl, M., Hook, F., Krozer, A., Brzezinski, P. Kasemo, B.: Quartz crystal microbalance setup for frequency and G-factor rneasurements in gaseous and liquid environments. Rev. Sci. Instruments (1995)
38.
go back to reference Rodriguez, M., McGarry, P., Sniadecki, N.: Experimental and modeling approaches. Appl. Mech. Rev. Rev. Cell Mech. (2013) Rodriguez, M., McGarry, P., Sniadecki, N.: Experimental and modeling approaches. Appl. Mech. Rev. Rev. Cell Mech. (2013)
39.
go back to reference Saitakis, M. Gizeli, E.: Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions. Cellular and Molecular Life Sci pp. 357-371 (2012) Saitakis, M. Gizeli, E.: Acoustic sensors as a biophysical tool for probing cell attachment and cell/surface interactions. Cellular and Molecular Life Sci pp. 357-371 (2012)
40.
go back to reference Scuor, N., Gallina, P., Panchawagh, H. V., Mahajan, R., Sbaizero, O. Sergo, V.: Design of a novel MEMS platform for the biaxial stimulation of living cells. Biomed Microdevices, pp. 239-246 (2006) Scuor, N., Gallina, P., Panchawagh, H. V., Mahajan, R., Sbaizero, O. Sergo, V.: Design of a novel MEMS platform for the biaxial stimulation of living cells. Biomed Microdevices, pp. 239-246 (2006)
41.
go back to reference Shi, J., Ahmed, D., Mao, X., Lin, S.-C. S., Lawit, A. Huang, T. J.: Acoustic tweezers/ patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab on a Chip (2009) Shi, J., Ahmed, D., Mao, X., Lin, S.-C. S., Lawit, A. Huang, T. J.: Acoustic tweezers/ patterning cells and microparticles using standing surface acoustic waves (SSAW). Lab on a Chip (2009)
42.
go back to reference Singh, A., Suri, S., Lee, T., Chilton, J. M., Cooke, M. T., Chen, W., . . . Garcia, A. J.: Adhesion strength–based, label-free isolation of human pluripotent stem cells. Nature Methods (2013) Singh, A., Suri, S., Lee, T., Chilton, J. M., Cooke, M. T., Chen, W., . . . Garcia, A. J.: Adhesion strength–based, label-free isolation of human pluripotent stem cells. Nature Methods (2013)
43.
go back to reference Szwast, M., Suchecka, T. Piątkiewicz, W.: Mathematical Model For Biological Cell Deformation In a Cylindrical Pore. Chem. Process Eng. 33 (3); (2012) Szwast, M., Suchecka, T. Piątkiewicz, W.: Mathematical Model For Biological Cell Deformation In a Cylindrical Pore. Chem. Process Eng. 33 (3); (2012)
44.
go back to reference Takahashi, K., Toshikazu, K., Arai, Y., Kitajima, I., Takigawa, M., Imanishi, J. Hirasawa, Y.: Hydrostatic pressure induces expression of interleukin 6 and tumour necrosis factor mRNAs in a chondrocyte-like cell line. Ann Rheum Dis, pp. 231-236 (1988) Takahashi, K., Toshikazu, K., Arai, Y., Kitajima, I., Takigawa, M., Imanishi, J. Hirasawa, Y.: Hydrostatic pressure induces expression of interleukin 6 and tumour necrosis factor mRNAs in a chondrocyte-like cell line. Ann Rheum Dis, pp. 231-236 (1988)
45.
go back to reference Tan, J., Tien, J., Pirone, D., Gray, D., Bhadriraju, K. Chen, C.: Cells lying on a bed of microneedles: an approach to isolate mechanical force. PNAS (2003) Tan, J., Tien, J., Pirone, D., Gray, D., Bhadriraju, K. Chen, C.: Cells lying on a bed of microneedles: an approach to isolate mechanical force. PNAS (2003)
46.
go back to reference Tanase, M., Biais, N. Sheetz, M.: Magnetic tweezers in cell biology. Methods in Cell Biol. (2007) Tanase, M., Biais, N. Sheetz, M.: Magnetic tweezers in cell biology. Methods in Cell Biol. (2007)
47.
go back to reference Thoumine, O., Ott, A., Cardoso, O. Meister, J.-J.: Microplates: a new tool for manipulation and mechanical perturbation of individual cells. J. Biochem. Biophys. Methods (1998) Thoumine, O., Ott, A., Cardoso, O. Meister, J.-J.: Microplates: a new tool for manipulation and mechanical perturbation of individual cells. J. Biochem. Biophys. Methods (1998)
48.
go back to reference Tin, S. J., Li, Q. Lin, C. T.:Manipulation and isolation of single cells and nuclei. Methods in cell Biol., pp. 78-96 (2010) Tin, S. J., Li, Q. Lin, C. T.:Manipulation and isolation of single cells and nuclei. Methods in cell Biol., pp. 78-96 (2010)
49.
go back to reference Torzilli, P. A., Grigiene, R., Huang, C., Friedman, S. M., Doty, S. B., Boskey, A. L. Lust, G.: Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. J. Biomech., strony pp. 1-9 (1997) Torzilli, P. A., Grigiene, R., Huang, C., Friedman, S. M., Doty, S. B., Boskey, A. L. Lust, G.: Characterization of cartilage metabolic response to static and dynamic stress using a mechanical explant test system. J. Biomech., strony pp. 1-9 (1997)
50.
go back to reference Tymchenko, N., Nileback, E., Voinova, M., Gold, J., Kasemo, B. Svedhem, S.: Reversible changes in cell morphology due to cytoskeletal rearrangements measured in real-time by QCM-D. Biointerphases (2012) Tymchenko, N., Nileback, E., Voinova, M., Gold, J., Kasemo, B. Svedhem, S.: Reversible changes in cell morphology due to cytoskeletal rearrangements measured in real-time by QCM-D. Biointerphases (2012)
51.
go back to reference Voinova, M. V., Rodahl, M., Jonson, M. Kasemo, B.: Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: Continuum Mech. Approach. Physica Scripta, pp. 391-396 (1999) Voinova, M. V., Rodahl, M., Jonson, M. Kasemo, B.: Viscoelastic acoustic response of layered polymer films at fluid-solid interfaces: Continuum Mech. Approach. Physica Scripta, pp. 391-396 (1999)
52.
go back to reference Wang, N., Butler, J. Ingber, D.: Mechanotransduction across the cell surface and through the cytoskeleton. Science (1993) Wang, N., Butler, J. Ingber, D.: Mechanotransduction across the cell surface and through the cytoskeleton. Science (1993)
53.
go back to reference Yang, Y., Qu, X., Luo, Y., Yang, A.: Optical. Electronic Materials and Applications, Chongqing, China (2011) Yang, Y., Qu, X., Luo, Y., Yang, A.: Optical. Electronic Materials and Applications, Chongqing, China (2011)
54.
go back to reference Yu, H. Marshall, D.: Microfluidics for single cell analysis. Current Opinion in Biotechnol. (2012) Yu, H. Marshall, D.: Microfluidics for single cell analysis. Current Opinion in Biotechnol. (2012)
55.
go back to reference Zhang, H. Liu, K.-K.: Optical tweezers for single cells. Interface, pp. 671-690 (2008) Zhang, H. Liu, K.-K.: Optical tweezers for single cells. Interface, pp. 671-690 (2008)
Metadata
Title
Experimental methods of living cells mechanical loading: review
Authors
Natalia Branecka
Tomasz Lekszycki
Publication date
25-04-2022
Publisher
Springer Berlin Heidelberg
Published in
Continuum Mechanics and Thermodynamics / Issue 3/2023
Print ISSN: 0935-1175
Electronic ISSN: 1432-0959
DOI
https://doi.org/10.1007/s00161-022-01099-3

Other articles of this Issue 3/2023

Continuum Mechanics and Thermodynamics 3/2023 Go to the issue

Premium Partners