Skip to main content
Top
Published in: International Journal of Mechanics and Materials in Design 1/2018

03-12-2016

On the nonlinear dynamics of a piezoelectrically tuned micro-resonator based on non-classical elasticity theories

Authors: Alireza Nikpourian, Mohammad Reza Ghazavi, Saber Azizi

Published in: International Journal of Mechanics and Materials in Design | Issue 1/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Size dependent static and dynamic behavior of a fully clamped micro beam under electrostatic and piezoelectric actuations is investigated. The microbeam is modeled under the assumptions of Euler–Bernoulli beam theory. Viscous damping and nonlinearities due to electrostatic actuation and mid-plane stretching are considered. Residual stress and fringing field effect are taken into account as well. Governing equation of motion is derived using Hamilton’s principle along with the strain gradient theory (SGT), which is a non-classical continuum theory capable of taking size effect of elastic materials into account. Reduced order model of the partial differential equations of the system is obtained using Galerkin method. Static deflection, pull-in voltage and the primary resonance of the microbeam are examined and the effect of piezoelectric voltage and its polarization on the size dependent static and dynamic response is studied. It is found that the piezoelectric voltage can effectively change the flexural rigidity of the system which in turn affects the pull-in instability regime. The effect of material length scale parameter is examined by comparing the results of the SGT with the modified couple stress (MCST) and classical theory (CT), both of which are special cases of the former. Comparison demonstrates that the CT underestimates the stiffness and consequently the pull-in voltage and overestimates the amplitude of periodic solutions. The difference between the results of classical and non-classical theories becomes more and more as the dimensions of the system gets close to the length scale parameter. Non-classical theories predict more realistic behaviors for the micro system. The results of this paper can be used in designing microbeam based MEMS devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Azizi, S., Rezazadeh, G., Ghazavi, M.-R., Khadem, S.E.: Stabilizing the pull-in instability of an electro-statically actuated micro-beam using piezoelectric actuation. Appl. Math. Model. 35(10), 4796–4815 (2011)CrossRefMATH Azizi, S., Rezazadeh, G., Ghazavi, M.-R., Khadem, S.E.: Stabilizing the pull-in instability of an electro-statically actuated micro-beam using piezoelectric actuation. Appl. Math. Model. 35(10), 4796–4815 (2011)CrossRefMATH
go back to reference Azizi, S., Ghazavi, M.-R., Esmaeilzadeh Khadem, S., Rezazadeh, G., Cetinkaya, C.: Application of piezoelectric actuation to regularize the chaotic response of an electrostatically actuated micro-beam. Nonlinear Dyn. 73, 853–867 (2013)MathSciNetCrossRefMATH Azizi, S., Ghazavi, M.-R., Esmaeilzadeh Khadem, S., Rezazadeh, G., Cetinkaya, C.: Application of piezoelectric actuation to regularize the chaotic response of an electrostatically actuated micro-beam. Nonlinear Dyn. 73, 853–867 (2013)MathSciNetCrossRefMATH
go back to reference Azizi, S., Ghazavi, M., Rezazadeh, G., Ahmadian, I., Cetinkaya, C.: Tuning the primary resonances of a micro resonator, using piezoelectric actuation. Nonlinear Dyn. 76, 839–852 (2014)CrossRefMATH Azizi, S., Ghazavi, M., Rezazadeh, G., Ahmadian, I., Cetinkaya, C.: Tuning the primary resonances of a micro resonator, using piezoelectric actuation. Nonlinear Dyn. 76, 839–852 (2014)CrossRefMATH
go back to reference Chen, C., Hu, H., Dai, L.: Nonlinear behavior and characterization of a piezoelectric laminated microbeam system. Commun. Nonlinear Sci. Numer. Simul. 18(5), 1304–1315 (2013)MathSciNetCrossRefMATH Chen, C., Hu, H., Dai, L.: Nonlinear behavior and characterization of a piezoelectric laminated microbeam system. Commun. Nonlinear Sci. Numer. Simul. 18(5), 1304–1315 (2013)MathSciNetCrossRefMATH
go back to reference Farokhi, H., Ghayesh, M.: Size-dependent behaviour of electrically actuated microcantilever-based MEMS. Int. J. Mech. Mater. Des. 12(3), 301–315 (2016)CrossRef Farokhi, H., Ghayesh, M.: Size-dependent behaviour of electrically actuated microcantilever-based MEMS. Int. J. Mech. Mater. Des. 12(3), 301–315 (2016)CrossRef
go back to reference Fathalilou, M., Sadeghi, M., Rezazadeh, G.: Nonlinear behavior of capacitive micro-beams based on strain gradient theory. J. Mech. Sci. Technol. 28, 1141–1151 (2014)CrossRef Fathalilou, M., Sadeghi, M., Rezazadeh, G.: Nonlinear behavior of capacitive micro-beams based on strain gradient theory. J. Mech. Sci. Technol. 28, 1141–1151 (2014)CrossRef
go back to reference Fleck, N., Hutchinson, J.: Strain gradient plasticity. Adv. Appl. Mech. 33, 296–361 (1997)MATH Fleck, N., Hutchinson, J.: Strain gradient plasticity. Adv. Appl. Mech. 33, 296–361 (1997)MATH
go back to reference Fleck, N., Hutchinson, J.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)CrossRefMATH Fleck, N., Hutchinson, J.: A reformulation of strain gradient plasticity. J. Mech. Phys. Solids 49, 2245–2271 (2001)CrossRefMATH
go back to reference Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)CrossRef Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42, 475–487 (1994)CrossRef
go back to reference Ghayesh, M.H., Farokhi, H., Amabili, M.: Nonlinear behaviour of electrically actuated MEMS resonators. Int. J. Eng. Sci. 71(10), 137–155 (2013)CrossRef Ghayesh, M.H., Farokhi, H., Amabili, M.: Nonlinear behaviour of electrically actuated MEMS resonators. Int. J. Eng. Sci. 71(10), 137–155 (2013)CrossRef
go back to reference Kahrobaiyan, M., Asghari, M., Rahaeifard, M., Ahmadian, M.: A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. 49, 1256–1267 (2011)MathSciNetCrossRef Kahrobaiyan, M., Asghari, M., Rahaeifard, M., Ahmadian, M.: A nonlinear strain gradient beam formulation. Int. J. Eng. Sci. 49, 1256–1267 (2011)MathSciNetCrossRef
go back to reference Koiter, W.T.: Couple-stresses in the theory of elasticity: I and II. In: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series B Physical Sciences, vol. 67, pp. 17–44 (1964) Koiter, W.T.: Couple-stresses in the theory of elasticity: I and II. In: Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen Series B Physical Sciences, vol. 67, pp. 17–44 (1964)
go back to reference Kong, S.: Size effect on pull-in behavior of electrostatically actuated microbeams based on a modified couple stress theory. Appl. Math. Model. 37, 7481–7488 (2013)MathSciNetCrossRef Kong, S.: Size effect on pull-in behavior of electrostatically actuated microbeams based on a modified couple stress theory. Appl. Math. Model. 37, 7481–7488 (2013)MathSciNetCrossRef
go back to reference Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)CrossRefMATH Lam, D.C.C., Yang, F., Chong, A.C.M., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)CrossRefMATH
go back to reference Li, Y., Meguid, S.A., Fu, Y., Xu, D.: Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam. Proc. R. Soc. A 470, 20130473 (2014)CrossRefMATH Li, Y., Meguid, S.A., Fu, Y., Xu, D.: Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam. Proc. R. Soc. A 470, 20130473 (2014)CrossRefMATH
go back to reference Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–863 (1995)CrossRef Ma, Q., Clarke, D.R.: Size dependent hardness of silver single crystals. J. Mater. Res. 10, 853–863 (1995)CrossRef
go back to reference McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060 (2005)CrossRef McFarland, A.W., Colton, J.S.: Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J. Micromech. Microeng. 15, 1060 (2005)CrossRef
go back to reference Meirovitch, L.: Fundamentals of Vibrations. McGraw-Hill, New York (2001) Meirovitch, L.: Fundamentals of Vibrations. McGraw-Hill, New York (2001)
go back to reference Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(11), 417–438 (1965)CrossRef Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(11), 417–438 (1965)CrossRef
go back to reference Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, New York (1995)CrossRefMATH Nayfeh, A.H., Balachandran, B.: Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods. Wiley, New York (1995)CrossRefMATH
go back to reference Nayfeh, A., Younis, M., Abdel-Rahman, E.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153–163 (2007)CrossRefMATH Nayfeh, A., Younis, M., Abdel-Rahman, E.: Dynamic pull-in phenomenon in MEMS resonators. Nonlinear Dyn. 48, 153–163 (2007)CrossRefMATH
go back to reference Osterberg, P.M., Senturia, S.D.: M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J. Microelectromech. Syst. 6, 107–118 (1997)CrossRef Osterberg, P.M., Senturia, S.D.: M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J. Microelectromech. Syst. 6, 107–118 (1997)CrossRef
go back to reference Preumont, A.: Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems. Springer, Dordrecht (2006)MATH Preumont, A.: Mechatronics: Dynamics of Electromechanical and Piezoelectric Systems. Springer, Dordrecht (2006)MATH
go back to reference Rahaeifard, M., Ahmadian, M.T.: On pull-in instabilities of microcantilevers. Int. J. Eng. Sci. 87(2), 23–31 (2015)CrossRef Rahaeifard, M., Ahmadian, M.T.: On pull-in instabilities of microcantilevers. Int. J. Eng. Sci. 87(2), 23–31 (2015)CrossRef
go back to reference Rahaeifard, M., Ahmadian, M.T., Firoozbakhsh, K.: Size-dependent dynamic behavior of microcantilevers under suddenly applied DC voltage. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 896–906 (2013)CrossRef Rahaeifard, M., Ahmadian, M.T., Firoozbakhsh, K.: Size-dependent dynamic behavior of microcantilevers under suddenly applied DC voltage. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 228, 896–906 (2013)CrossRef
go back to reference Rahaeifard, M., Ahmadian, M.T., Firoozbakhsh, K.: Vibration analysis of electrostatically actuated nonlinear microbridges based on the modified couple stress theory. Appl. Math. Model. 39(21), 6694–6704 (2015)MathSciNetCrossRef Rahaeifard, M., Ahmadian, M.T., Firoozbakhsh, K.: Vibration analysis of electrostatically actuated nonlinear microbridges based on the modified couple stress theory. Appl. Math. Model. 39(21), 6694–6704 (2015)MathSciNetCrossRef
go back to reference Rahaeifard, M., Kahrobaiyan, M.H., Asghari, M., Ahmadian, M.T.: Static pull-in analysis of microcantilevers based on the modified couple stress theory. Sens. Actuators, A 171(11), 370–374 (2011)CrossRefMATH Rahaeifard, M., Kahrobaiyan, M.H., Asghari, M., Ahmadian, M.T.: Static pull-in analysis of microcantilevers based on the modified couple stress theory. Sens. Actuators, A 171(11), 370–374 (2011)CrossRefMATH
go back to reference Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd edn. Taylor & Francis, Boca Raton, FL (1999) Reddy, J.N.: Theory and Analysis of Elastic Plates and Shells, 2nd edn. Taylor & Francis, Boca Raton, FL (1999)
go back to reference Rezazadeh, G., Tahmasebi, A., Zubstov, M.: Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage. Microsyst. Technol. 12, 1163–1170 (2006)CrossRef Rezazadeh, G., Tahmasebi, A., Zubstov, M.: Application of piezoelectric layers in electrostatic MEM actuators: controlling of pull-in voltage. Microsyst. Technol. 12, 1163–1170 (2006)CrossRef
go back to reference Rokni, H., Seethaler, R.J., Milani, A.S., Hosseini-Hashemi, S., Li, X.-F.: Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation. Sens. Actuators, A 190, 32–43 (2013)CrossRef Rokni, H., Seethaler, R.J., Milani, A.S., Hosseini-Hashemi, S., Li, X.-F.: Analytical closed-form solutions for size-dependent static pull-in behavior in electrostatic micro-actuators via Fredholm integral equation. Sens. Actuators, A 190, 32–43 (2013)CrossRef
go back to reference Sahmani, S., Bahrami, M.: Size-dependent dynamic stability analysis of microbeams actuated by piezoelectric voltage based on strain gradient elasticity theory. J. Mech. Sci. Technol. 29, 325–333 (2015)CrossRef Sahmani, S., Bahrami, M.: Size-dependent dynamic stability analysis of microbeams actuated by piezoelectric voltage based on strain gradient elasticity theory. J. Mech. Sci. Technol. 29, 325–333 (2015)CrossRef
go back to reference Stölken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)CrossRef Stölken, J.S., Evans, A.G.: A microbend test method for measuring the plasticity length scale. Acta Mater. 46, 5109–5115 (1998)CrossRef
go back to reference Wang, B., Zhou, S., Zhao, J., Chen, X.: Size-dependent pull-in instability of electrostatically actuated microbeam-based MEMS. J. Micromech. Microeng. 21, 027001 (2011)CrossRef Wang, B., Zhou, S., Zhao, J., Chen, X.: Size-dependent pull-in instability of electrostatically actuated microbeam-based MEMS. J. Micromech. Microeng. 21, 027001 (2011)CrossRef
go back to reference Xiao, Y., Wang, B., Zhou, S.: Pull-in voltage analysis of electrostatically actuated MEMS with piezoelectric layers: a size-dependent model. Mech. Res. Commun. 66(6), 7–14 (2015)CrossRef Xiao, Y., Wang, B., Zhou, S.: Pull-in voltage analysis of electrostatically actuated MEMS with piezoelectric layers: a size-dependent model. Mech. Res. Commun. 66(6), 7–14 (2015)CrossRef
go back to reference Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(5), 2731–2743 (2002)CrossRefMATH Yang, F., Chong, A.C.M., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(5), 2731–2743 (2002)CrossRefMATH
go back to reference Yin, L., Qian, Q., Wang, L.: Size effect on the static behavior of electrostatically actuated microbeams. Acta. Mech. Sin. 27, 445–451 (2011)CrossRefMATH Yin, L., Qian, Q., Wang, L.: Size effect on the static behavior of electrostatically actuated microbeams. Acta. Mech. Sin. 27, 445–451 (2011)CrossRefMATH
go back to reference Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer US, New York (2011)CrossRef Younis, M.I.: MEMS Linear and Nonlinear Statics and Dynamics. Springer US, New York (2011)CrossRef
go back to reference Zamanian, M., Khadem, S.E., Mahmoodi, S.N.: The effect of a piezoelectric layer on the mechanical behavior of an electrostatic actuated microbeam. Smart Mater. Struct. 17, 065024 (2008)CrossRef Zamanian, M., Khadem, S.E., Mahmoodi, S.N.: The effect of a piezoelectric layer on the mechanical behavior of an electrostatic actuated microbeam. Smart Mater. Struct. 17, 065024 (2008)CrossRef
go back to reference Zamanian, M., Khadem, S., Mahmoodi, S.: Analysis of non-linear vibrations of a microresonator under piezoelectric and electrostatic actuations. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 223, 329–344 (2009)CrossRef Zamanian, M., Khadem, S., Mahmoodi, S.: Analysis of non-linear vibrations of a microresonator under piezoelectric and electrostatic actuations. Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci. 223, 329–344 (2009)CrossRef
go back to reference Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-poornaki, I., Shabani, R.: Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes. Appl. Math. Model. 37, 6964–6978 (2013)MathSciNetCrossRef Zamanzadeh, M., Rezazadeh, G., Jafarsadeghi-poornaki, I., Shabani, R.: Static and dynamic stability modeling of a capacitive FGM micro-beam in presence of temperature changes. Appl. Math. Model. 37, 6964–6978 (2013)MathSciNetCrossRef
go back to reference Zhang, J., Fu, Y.: Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica 47, 1649–1658 (2012)MathSciNetCrossRefMATH Zhang, J., Fu, Y.: Pull-in analysis of electrically actuated viscoelastic microbeams based on a modified couple stress theory. Meccanica 47, 1649–1658 (2012)MathSciNetCrossRefMATH
Metadata
Title
On the nonlinear dynamics of a piezoelectrically tuned micro-resonator based on non-classical elasticity theories
Authors
Alireza Nikpourian
Mohammad Reza Ghazavi
Saber Azizi
Publication date
03-12-2016
Publisher
Springer Netherlands
Published in
International Journal of Mechanics and Materials in Design / Issue 1/2018
Print ISSN: 1569-1713
Electronic ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-016-9357-y

Other articles of this Issue 1/2018

International Journal of Mechanics and Materials in Design 1/2018 Go to the issue

Premium Partners