Skip to main content
Top
Published in: Neural Computing and Applications 5/2017

25-11-2015 | Original Article

On the role of astrocyte analog circuit in neural frequency adaptation

Authors: Mahnaz Ranjbar, Mahmood Amiri

Published in: Neural Computing and Applications | Issue 5/2017

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In the present study, we develop an analog neuromorphic circuit to implement the astrocyte dynamics. The intracellular calcium waves produced by astrocytes are modeled by a simplified dynamical model which considers the main pathways of neuron–astrocyte interactions. Then, a simple CMOS circuit implementation that maps the model on hardware is proposed. It is designed and simulated using HSPICE simulator in 0.35 μm standard CMOS technology. The simulation results illustrate that the proposed astrocyte circuit is a good candidate for applications in neuromorphic devices which implement biologically plausible neural circuits. Finally, the proposed astrocyte analog circuit is used to study neural frequency adaptation. The results of simulations demonstrate that in low frequency range, the astrocyte circuit can have a significant role in the frequency adaptation of the neuronal model. The low power consumption (205 μW) and the compactness of the circuit make it a practical solution for the implementation of dense arrays of spiking neurons and astrocytes in a single chip.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Mead C (1990) Neuromorphic electronic systems. Proc IEEE 78(10):1629–1636CrossRef Mead C (1990) Neuromorphic electronic systems. Proc IEEE 78(10):1629–1636CrossRef
2.
go back to reference Hashmi A, Nere A, Thomas JJ, Lipasti M (2012) A case for neuromorphic ISAs. ACM SIGPLAN Notices 47(4):145–158CrossRef Hashmi A, Nere A, Thomas JJ, Lipasti M (2012) A case for neuromorphic ISAs. ACM SIGPLAN Notices 47(4):145–158CrossRef
3.
go back to reference Indiveri G et al (2011) Neuromorphic silicon neuron circuits. Front Neurosci 5(73):1–23 Indiveri G et al (2011) Neuromorphic silicon neuron circuits. Front Neurosci 5(73):1–23
4.
go back to reference Wijekoon JHB, Dudek P (2007) Spiking and bursting firing patterns of a compact VLSI cortical neuron circuit. In: IEEE international joint conference on neural networks, Orlando, FL, pp 1332–1337 Wijekoon JHB, Dudek P (2007) Spiking and bursting firing patterns of a compact VLSI cortical neuron circuit. In: IEEE international joint conference on neural networks, Orlando, FL, pp 1332–1337
5.
go back to reference Bartolozzi C, Indiveri G (2007) Synaptic dynamics in analog VLSI. Neural Comput 19(10):2581–2603CrossRefMATH Bartolozzi C, Indiveri G (2007) Synaptic dynamics in analog VLSI. Neural Comput 19(10):2581–2603CrossRefMATH
6.
go back to reference Indiveri G (2002) Neuromorphic bistable VLSI synapses with spike-timing-dependent plasticity. NIPS 15:1091–1098 Indiveri G (2002) Neuromorphic bistable VLSI synapses with spike-timing-dependent plasticity. NIPS 15:1091–1098
7.
go back to reference Serrano-Gotarredona T, Masquelier T, Prodromakis T, Indiveri G, Linares-Barranco B (2013) STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front Neurosci 7(2):1–15 Serrano-Gotarredona T, Masquelier T, Prodromakis T, Indiveri G, Linares-Barranco B (2013) STDP and STDP variations with memristors for spiking neuromorphic learning systems. Front Neurosci 7(2):1–15
8.
go back to reference Nazari S, Faez K, Karami E, Amiri M (2014) A digital neurmorphic circuit for a simplified model of astrocyte dynamics. Neurosci Lett 582:21–26CrossRef Nazari S, Faez K, Karami E, Amiri M (2014) A digital neurmorphic circuit for a simplified model of astrocyte dynamics. Neurosci Lett 582:21–26CrossRef
9.
go back to reference Sridharan D, Millner S, Arthur J, Boahen K (2010) Robust spatial working memory through inhibitory gamma synchrony. In: Conference computational and systems neuroscience, Salt Lake City, UT Sridharan D, Millner S, Arthur J, Boahen K (2010) Robust spatial working memory through inhibitory gamma synchrony. In: Conference computational and systems neuroscience, Salt Lake City, UT
10.
go back to reference Lichtsteiner P, Posch C, Delbruck T (2008) A 128 × 128 120 dB 15 μs latency asynchronous temporal contrast vision sensor. IEEE J Solid State Circuits 43(2):566–576CrossRef Lichtsteiner P, Posch C, Delbruck T (2008) A 128 × 128 120 dB 15 μs latency asynchronous temporal contrast vision sensor. IEEE J Solid State Circuits 43(2):566–576CrossRef
11.
go back to reference Andreou AG, Boahen KA (1991) Modeling inner and outer plexiform retinal processing using nonlinear coupled resistive networks. In: Electronic imaging’91, San Jose, CA. International Society for Optics and Photonics, pp 270–281 Andreou AG, Boahen KA (1991) Modeling inner and outer plexiform retinal processing using nonlinear coupled resistive networks. In: Electronic imaging’91, San Jose, CA. International Society for Optics and Photonics, pp 270–281
12.
go back to reference Chan V, Liu SC, van Schaik A (2007) AER EAR: A matched silicon cochlea pair with address event representation interface. IEEE Trans Circuits Syst I Regul Pap 54(1):48–59CrossRef Chan V, Liu SC, van Schaik A (2007) AER EAR: A matched silicon cochlea pair with address event representation interface. IEEE Trans Circuits Syst I Regul Pap 54(1):48–59CrossRef
13.
go back to reference Indiveri G, Chicca E, Douglas R (2006) A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans Neural Netw 17(1):211–221CrossRef Indiveri G, Chicca E, Douglas R (2006) A VLSI array of low-power spiking neurons and bistable synapses with spike-timing dependent plasticity. IEEE Trans Neural Netw 17(1):211–221CrossRef
14.
go back to reference Ambroise M, Levi T, Joucla S, Yvert B, Saïghi S (2013) Real-time biomimetic central pattern generators in an FPGA for hybrid experiments. Front Neurosci 7(215):1–11 Ambroise M, Levi T, Joucla S, Yvert B, Saïghi S (2013) Real-time biomimetic central pattern generators in an FPGA for hybrid experiments. Front Neurosci 7(215):1–11
15.
go back to reference Nazari S, Faez K, Amiri M, Karami E (2015) A digital implementation of neuron–astrocyte interaction for neuromorphic applications. Neural Netw 66:79–90CrossRef Nazari S, Faez K, Amiri M, Karami E (2015) A digital implementation of neuron–astrocyte interaction for neuromorphic applications. Neural Netw 66:79–90CrossRef
16.
go back to reference Nazari S, Amiri M, Faez K, Amiri M (2015) Multiplier-less digital implementation of neuron–astrocyte signalling on FPGA. Neurocomputing 164:281–292CrossRef Nazari S, Amiri M, Faez K, Amiri M (2015) Multiplier-less digital implementation of neuron–astrocyte signalling on FPGA. Neurocomputing 164:281–292CrossRef
17.
go back to reference Ranjbar M, Amiri M (2015) An analog astrocyte-neuron interaction circuit for neuromorphic applications. JCEL 14:694–706 Ranjbar M, Amiri M (2015) An analog astrocyte-neuron interaction circuit for neuromorphic applications. JCEL 14:694–706
18.
go back to reference Irizarry-Valle Y, Parker AC, Joshi J (2013) A CMOS neuromorphic approach to emulate neuro-astrocyte interactions. In: The 2013 international joint conference on IEEE neural networks (IJCNN), pp 1–7 Irizarry-Valle Y, Parker AC, Joshi J (2013) A CMOS neuromorphic approach to emulate neuro-astrocyte interactions. In: The 2013 international joint conference on IEEE neural networks (IJCNN), pp 1–7
19.
go back to reference Moradi S, Indiveri G (2013) An event-based neural network architecture with an asynchronous programmable synaptic memory Synaptic Memory. IEEE Trans Biomed Circuits Syst 8(1):98–107CrossRef Moradi S, Indiveri G (2013) An event-based neural network architecture with an asynchronous programmable synaptic memory Synaptic Memory. IEEE Trans Biomed Circuits Syst 8(1):98–107CrossRef
20.
go back to reference Nazari S, Faez K, Amiri M, Karami E (2015) A novel digital implementation of neuron–astrocyte interactions. J Comput Electron 14:227–239CrossRef Nazari S, Faez K, Amiri M, Karami E (2015) A novel digital implementation of neuron–astrocyte interactions. J Comput Electron 14:227–239CrossRef
22.
go back to reference Fellin T, Pascual O, Haydon PG (2006) Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology 21(3):208–215CrossRef Fellin T, Pascual O, Haydon PG (2006) Astrocytes coordinate synaptic networks: balanced excitation and inhibition. Physiology 21(3):208–215CrossRef
23.
go back to reference Amiri M, Bahrami F, Janahmadi M (2012) On the role of astrocytes in epilepsy: a functional modeling approach. Neurosci Res 72(2):172–180CrossRefMATH Amiri M, Bahrami F, Janahmadi M (2012) On the role of astrocytes in epilepsy: a functional modeling approach. Neurosci Res 72(2):172–180CrossRefMATH
24.
go back to reference Amiri M, Bahrami F, Janahmadi M (2012) Modified thalamocortical model: a step towards more understanding of the functional contribution of astrocytes to epilepsy. J Comput Neurosci 33(2):285–299MathSciNetCrossRef Amiri M, Bahrami F, Janahmadi M (2012) Modified thalamocortical model: a step towards more understanding of the functional contribution of astrocytes to epilepsy. J Comput Neurosci 33(2):285–299MathSciNetCrossRef
25.
go back to reference Amiri M, Montaseri G, Bahrami F (2013) A phase plane analysis of neuron–astrocyte interactions. Neural Netw 44:157–165CrossRefMATH Amiri M, Montaseri G, Bahrami F (2013) A phase plane analysis of neuron–astrocyte interactions. Neural Netw 44:157–165CrossRefMATH
26.
go back to reference Barker AJ, Ullian EM (2008) New roles for astrocytes in developing synaptic circuits. Commun Integr Biol 1(2):207–211CrossRef Barker AJ, Ullian EM (2008) New roles for astrocytes in developing synaptic circuits. Commun Integr Biol 1(2):207–211CrossRef
27.
go back to reference Fellin T, Carmignoto G (2004) Neurone to astrocyte signalling in the brain represents a distinct multifunctional unit. J Physiol 559(1):3–15CrossRef Fellin T, Carmignoto G (2004) Neurone to astrocyte signalling in the brain represents a distinct multifunctional unit. J Physiol 559(1):3–15CrossRef
28.
go back to reference Wijekoon JH, Dudek P (2012) VLSI circuits implementing computational models of neocortical circuits. J Neurosci Methods 21(1):93–109CrossRef Wijekoon JH, Dudek P (2012) VLSI circuits implementing computational models of neocortical circuits. J Neurosci Methods 21(1):93–109CrossRef
29.
go back to reference Irizarry-Valle Y, Parker AC (2015) An astrocyte neuromorphic circuit that influences neuronal phase synchrony. IEEE Trans Biomed Circuits Syst 9(2):175–187CrossRef Irizarry-Valle Y, Parker AC (2015) An astrocyte neuromorphic circuit that influences neuronal phase synchrony. IEEE Trans Biomed Circuits Syst 9(2):175–187CrossRef
30.
go back to reference Piri M, Amiri M, Amiri M (2015) A bio-inspired stimulator to desynchronize epileptic cortical population models: a digital implementation framework. Neural Netw 67:74–83CrossRef Piri M, Amiri M, Amiri M (2015) A bio-inspired stimulator to desynchronize epileptic cortical population models: a digital implementation framework. Neural Netw 67:74–83CrossRef
31.
go back to reference Nazari S, Amiri M, Faez K, Karami E (2014) A novel digital circuit for astrocyte-inspired stimulator to desynchronize two coupled oscillators. In: IEEE 2014 21th Iranian conference on biomedical engineering (ICBME), pp 80–85 Nazari S, Amiri M, Faez K, Karami E (2014) A novel digital circuit for astrocyte-inspired stimulator to desynchronize two coupled oscillators. In: IEEE 2014 21th Iranian conference on biomedical engineering (ICBME), pp 80–85
32.
go back to reference Amiri M, Montaseri G, Bahrami F (2011) On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol Cybern 105(2):153–166MathSciNetCrossRefMATH Amiri M, Montaseri G, Bahrami F (2011) On the role of astrocytes in synchronization of two coupled neurons: a mathematical perspective. Biol Cybern 105(2):153–166MathSciNetCrossRefMATH
33.
go back to reference Amiri M, Hosseinmardi N, Bahrami F, Janahmadi M (2013) Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments. J Comput Neurosci 34(3):489–504MathSciNetCrossRef Amiri M, Hosseinmardi N, Bahrami F, Janahmadi M (2013) Astrocyte-neuron interaction as a mechanism responsible for generation of neural synchrony: a study based on modeling and experiments. J Comput Neurosci 34(3):489–504MathSciNetCrossRef
34.
go back to reference Giugliano M (2009) Calcium waves in astrocyte networks: theory and experiments. Front Neurosci 3(2):160–161CrossRef Giugliano M (2009) Calcium waves in astrocyte networks: theory and experiments. Front Neurosci 3(2):160–161CrossRef
35.
go back to reference Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27(12):735–743CrossRef Hertz L, Zielke HR (2004) Astrocytic control of glutamatergic activity: astrocytes as stars of the show. Trends Neurosci 27(12):735–743CrossRef
36.
go back to reference Mesejo P, Ibáñez O, Fernández-Blanco E, Cedrón F, Pazos A, Porto-Pazos AB (2015) Artificial neuron–glia networks learning approach based on cooperative coevolution. Int J Neural Syst 25(4):1550012CrossRef Mesejo P, Ibáñez O, Fernández-Blanco E, Cedrón F, Pazos A, Porto-Pazos AB (2015) Artificial neuron–glia networks learning approach based on cooperative coevolution. Int J Neural Syst 25(4):1550012CrossRef
37.
go back to reference Halassa MM, Fellin T, Haydon PG (2009) Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57(4):343–346CrossRef Halassa MM, Fellin T, Haydon PG (2009) Tripartite synapses: roles for astrocytic purines in the control of synaptic physiology and behavior. Neuropharmacology 57(4):343–346CrossRef
38.
go back to reference Haydon PG, Volterra A, Magistretti PJ (2002) The tripartite synapse: glia in synaptic transmission (No. LNDC-BOOK-2010-002). Oxford University Press, Oxford Haydon PG, Volterra A, Magistretti PJ (2002) The tripartite synapse: glia in synaptic transmission (No. LNDC-BOOK-2010-002). Oxford University Press, Oxford
39.
go back to reference Joshi J, Zhang J, Wang C, Hsu CC, Parker AC, Zhou C, Ravishankar U (2011) A biomimetic fabricated carbon nanotube synapse for prosthetic applications. In: Life Science Systems and Applications Workshop (LiSSA), pp 139–142 Joshi J, Zhang J, Wang C, Hsu CC, Parker AC, Zhou C, Ravishankar U (2011) A biomimetic fabricated carbon nanotube synapse for prosthetic applications. In: Life Science Systems and Applications Workshop (LiSSA), pp 139–142
40.
go back to reference Montaseri G, Yazdanpanah MJ, Amiri M (2011) Astrocyte-inspired controller design for desynchronization of two coupled limit-cycle oscillators. In: Third world congress on IEEE nature and biologically inspired computing (NaBIC), pp 195–200 Montaseri G, Yazdanpanah MJ, Amiri M (2011) Astrocyte-inspired controller design for desynchronization of two coupled limit-cycle oscillators. In: Third world congress on IEEE nature and biologically inspired computing (NaBIC), pp 195–200
41.
go back to reference Postnov DE, Ryazanova LS, Sosnovtseva OV (2007) Functional modeling of neural–glial interaction. Biosystems 89(1):84–91CrossRef Postnov DE, Ryazanova LS, Sosnovtseva OV (2007) Functional modeling of neural–glial interaction. Biosystems 89(1):84–91CrossRef
42.
go back to reference Postnov DE, Koreshkov RN, Brazhe NA, Brazhe AR, Sosnovtseva OV (2009) Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks. J Biol Phys 35(4):425–445CrossRef Postnov DE, Koreshkov RN, Brazhe NA, Brazhe AR, Sosnovtseva OV (2009) Dynamical patterns of calcium signaling in a functional model of neuron–astrocyte networks. J Biol Phys 35(4):425–445CrossRef
43.
go back to reference Naud R, Marcille N, Clopath C, Gerstner W (2008) Firing patterns in the adaptive exponential integrate-and-fire model. Biol Cybern 99(4–5):335–347MathSciNetCrossRefMATH Naud R, Marcille N, Clopath C, Gerstner W (2008) Firing patterns in the adaptive exponential integrate-and-fire model. Biol Cybern 99(4–5):335–347MathSciNetCrossRefMATH
44.
go back to reference Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94(5):3637–3642CrossRef Brette R, Gerstner W (2005) Adaptive exponential integrate-and-fire model as an effective description of neuronal activity. J Neurophysiol 94(5):3637–3642CrossRef
45.
go back to reference Amiri M, Bahrami F, Janahmadi M (2012) Functional contributions of astrocytes in synchronization of a neuronal network model. J Theor Biol 292:60–70MathSciNetCrossRefMATH Amiri M, Bahrami F, Janahmadi M (2012) Functional contributions of astrocytes in synchronization of a neuronal network model. J Theor Biol 292:60–70MathSciNetCrossRefMATH
46.
go back to reference Amiri M, Bahrami F, Janahmadi M (2011) Functional modeling of astrocytes in epilepsy: a feedback system perspective. Neural Comput Appl 20(8):1131–1139CrossRef Amiri M, Bahrami F, Janahmadi M (2011) Functional modeling of astrocytes in epilepsy: a feedback system perspective. Neural Comput Appl 20(8):1131–1139CrossRef
47.
go back to reference Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26(10):536–542CrossRef Newman EA (2003) New roles for astrocytes: regulation of synaptic transmission. Trends Neurosci 26(10):536–542CrossRef
48.
go back to reference Silchenko AN, Tass PA (2008) Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol Cybern 98(1):61–74CrossRefMATH Silchenko AN, Tass PA (2008) Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol Cybern 98(1):61–74CrossRefMATH
49.
go back to reference Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11(4):227–238CrossRef Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11(4):227–238CrossRef
50.
go back to reference Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81(4):728–739CrossRef Araque A, Carmignoto G, Haydon PG, Oliet SH, Robitaille R, Volterra A (2014) Gliotransmitters travel in time and space. Neuron 81(4):728–739CrossRef
51.
go back to reference Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, Khakh BS (2014) Astrocyte Kir4. 1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17(5):694–703CrossRef Tong X, Ao Y, Faas GC, Nwaobi SE, Xu J, Haustein MD, Khakh BS (2014) Astrocyte Kir4. 1 ion channel deficits contribute to neuronal dysfunction in Huntington’s disease model mice. Nat Neurosci 17(5):694–703CrossRef
52.
go back to reference Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Vignali DA (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72(4):917–927CrossRef Woo SR, Turnis ME, Goldberg MV, Bankoti J, Selby M, Nirschl CJ, Vignali DA (2012) Immune inhibitory molecules LAG-3 and PD-1 synergistically regulate T-cell function to promote tumoral immune escape. Cancer Res 72(4):917–927CrossRef
Metadata
Title
On the role of astrocyte analog circuit in neural frequency adaptation
Authors
Mahnaz Ranjbar
Mahmood Amiri
Publication date
25-11-2015
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 5/2017
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-015-2112-8

Other articles of this Issue 5/2017

Neural Computing and Applications 5/2017 Go to the issue

Premium Partner