Skip to main content
Top
Published in: Strength of Materials 1/2014

01-01-2014

On the Strength and Crack Propagation Process of the Pre-Cracked Rock-Like Specimens under Uniaxial Compression

Authors: H. Haeri, K. Shahriar, M. F. Marji, P. Moarefvand

Published in: Strength of Materials | Issue 1/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The pre-cracked cylindrical specimens of rock-like materials are experimentally tested under compressive loading (using specially made rock-like specimens from portland pozzolana cement). The stress-strain and strength of the specimens are measured showing the decreasing effects of the cracks and their orientation on the final breakage stress of the specimen. The crack initiation and coalescence stresses during the crack propagation process are observed. The breakage process of the specimens is studied by inserting single and double cracks with different inclination angles at the center and applying uniaxial compressive stress at both ends of the specimen. The wing cracks are produced at the first stage of loading and start their propagation toward the direction of uniaxial compressive loading. The secondary cracks may also be produced in form of quasicoplanar and/or oblique cracks in a stable manner. The secondary cracks may eventually continue their propagation in the direction of the maximum principle stress. The same specimens are numerically simulated by an indirect boundary element method known as displacement discontinuity method. One may validate the results by the numerical and experimental results given in this study.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference A. R. Ingraffea, “Fracture propagation in rock,” in: Z. P. Bazant (Ed.), Mechanics of Geomaterials: Rocks, Concretes, Soils, Ch. 12, John Wiley & Sons, Chichester, New York (1985), pp. 219–258. A. R. Ingraffea, “Fracture propagation in rock,” in: Z. P. Bazant (Ed.), Mechanics of Geomaterials: Rocks, Concretes, Soils, Ch. 12, John Wiley & Sons, Chichester, New York (1985), pp. 219–258.
2.
go back to reference H. Horii and S. Nemat-Nasser, Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure, J. Geophys. Res., 90, 3105–3125 (1985).CrossRef H. Horii and S. Nemat-Nasser, Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure, J. Geophys. Res., 90, 3105–3125 (1985).CrossRef
3.
go back to reference O. Reyes and H. H. Einstein, “Failure mechanism of fractured rock – a fracture coalescence model,” in: Proc. 7th Int. Congress of Rock Mechanics, Vol. 1 (1990), pp. 333–340. O. Reyes and H. H. Einstein, “Failure mechanism of fractured rock – a fracture coalescence model,” in: Proc. 7th Int. Congress of Rock Mechanics, Vol. 1 (1990), pp. 333–340.
4.
go back to reference B. Shen, O. Stephansson, H. H. Einstein, and B. Ghahreman, “Coalescence of fractures under shear stress experiments,” J. Geophys. Res., 100, 5975–5990 (1995).CrossRef B. Shen, O. Stephansson, H. H. Einstein, and B. Ghahreman, “Coalescence of fractures under shear stress experiments,” J. Geophys. Res., 100, 5975–5990 (1995).CrossRef
5.
go back to reference R. H. C. Wong and K. T. Chau, “Crack coalescence in a rock-like material containing two cracks,” Int. J. Rock Mech. Min. Sci., 35, 147–164 (1998).CrossRef R. H. C. Wong and K. T. Chau, “Crack coalescence in a rock-like material containing two cracks,” Int. J. Rock Mech. Min. Sci., 35, 147–164 (1998).CrossRef
6.
go back to reference C. C. Ke, C. S. Chen, and C. H. Tu, “Determination of fracture toughness of anisotropic rocks by boundary element method,” Rock Mech. Rock Eng., 41, 509–538 (2008).CrossRef C. C. Ke, C. S. Chen, and C. H. Tu, “Determination of fracture toughness of anisotropic rocks by boundary element method,” Rock Mech. Rock Eng., 41, 509–538 (2008).CrossRef
7.
go back to reference E. Hoek and Z. T. Bieniawski, “Brittle rock fracture propagation in rock under compression,” Int. J. Fract. Mech., 1, 137–155 (1965). E. Hoek and Z. T. Bieniawski, “Brittle rock fracture propagation in rock under compression,” Int. J. Fract. Mech., 1, 137–155 (1965).
8.
go back to reference Z. T. Bieniawski, “Mechanism of brittle fracture of rock. Pt. II. Experimental studies,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 4, 407–23 (1967). Z. T. Bieniawski, “Mechanism of brittle fracture of rock. Pt. II. Experimental studies,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 4, 407–23 (1967).
9.
go back to reference A. Bobet and H. H. Einstein, “Fracture coalescence in rock-type materials under uniaxial and biaxial compression,” Int. J. Rock Mech. Min. Sci., 35, 863–888 (1998).CrossRef A. Bobet and H. H. Einstein, “Fracture coalescence in rock-type materials under uniaxial and biaxial compression,” Int. J. Rock Mech. Min. Sci., 35, 863–888 (1998).CrossRef
10.
go back to reference A. Bobet and H. H. Einstein, “Numerical modeling of fracture coalescence in a model rock material,” Int. J. Fract., 92, 221–252 (1998).CrossRef A. Bobet and H. H. Einstein, “Numerical modeling of fracture coalescence in a model rock material,” Int. J. Fract., 92, 221–252 (1998).CrossRef
11.
go back to reference J. F. Huang, G. L. Chen, Y. H. Zhao, and R. Wang, “An experimental study of the strain field development prior to failure of a marble plate under compression,” Tectonophysics, 175, 269–284 (1990).CrossRef J. F. Huang, G. L. Chen, Y. H. Zhao, and R. Wang, “An experimental study of the strain field development prior to failure of a marble plate under compression,” Tectonophysics, 175, 269–284 (1990).CrossRef
12.
go back to reference R. H. C. Wong, K. T. Chau, C. A. Tang, and P. Lin, “Analysis of crack coalescence in rock-like materials containing three flaws – Part I: experimental approach,” Int. J. Rock Mech. Min. Sci., 38, 909–924 (2001).CrossRef R. H. C. Wong, K. T. Chau, C. A. Tang, and P. Lin, “Analysis of crack coalescence in rock-like materials containing three flaws – Part I: experimental approach,” Int. J. Rock Mech. Min. Sci., 38, 909–924 (2001).CrossRef
13.
go back to reference E. Sahouryeh, A. V. Dyskin, and L. N. Germanovich, “Crack growth under biaxial compression,” Eng. Fract. Mech., 69, 2187–2198 (2002).CrossRef E. Sahouryeh, A. V. Dyskin, and L. N. Germanovich, “Crack growth under biaxial compression,” Eng. Fract. Mech., 69, 2187–2198 (2002).CrossRef
14.
go back to reference Y. P. Li, L. Z. Chen, and Y. H. Wang, “Experimental research on pre-cracked marble under compression,” Int. J. Solids Struct., 42, 2505–2516 (2005).CrossRef Y. P. Li, L. Z. Chen, and Y. H. Wang, “Experimental research on pre-cracked marble under compression,” Int. J. Solids Struct., 42, 2505–2516 (2005).CrossRef
15.
go back to reference C. H. Park and A. Bobet, “The initiation of slip on frictional fractures,” in: 41st US Rock Mechanics Symposium, Paper 06–923, Golden, CO (2006). C. H. Park and A. Bobet, “The initiation of slip on frictional fractures,” in: 41st US Rock Mechanics Symposium, Paper 06–923, Golden, CO (2006).
16.
go back to reference C. H. Park and A. Bobet, “Crack initiation and propagation from frictional fractures,” in: Proc. of the 1st Canada–US Rock Mechanics Symposium (2007), pp. 557–564. C. H. Park and A. Bobet, “Crack initiation and propagation from frictional fractures,” in: Proc. of the 1st Canada–US Rock Mechanics Symposium (2007), pp. 557–564.
17.
go back to reference C. H. Park, Coalescence of Frictional Fractures in Rock Materials, Ph.D. Thesis, Purdue University, West Lafayette, IN (2008). C. H. Park, Coalescence of Frictional Fractures in Rock Materials, Ph.D. Thesis, Purdue University, West Lafayette, IN (2008).
18.
go back to reference C. H. Park and A. Bobet, “Crack coalescence in specimens with open and closed flaws: A comparison,” Int. J. Rock Mech. Min. Sci., 46, 819–829 (2009).CrossRef C. H. Park and A. Bobet, “Crack coalescence in specimens with open and closed flaws: A comparison,” Int. J. Rock Mech. Min. Sci., 46, 819–829 (2009).CrossRef
19.
go back to reference C. H. Park and A. Bobet, “Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression,” Eng. Fract. Mech., 77, 2727–2748 (2010).CrossRef C. H. Park and A. Bobet, “Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression,” Eng. Fract. Mech., 77, 2727–2748 (2010).CrossRef
20.
go back to reference S. Q. Yang, Y. H. Dai, L. J. Han, and Z. Q. Jin, “Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression,” Eng. Fract. Mech., 76, 1833–1845 (2009).CrossRef S. Q. Yang, Y. H. Dai, L. J. Han, and Z. Q. Jin, “Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression,” Eng. Fract. Mech., 76, 1833–1845 (2009).CrossRef
21.
go back to reference R. P. Janeiro and H. H. Einstein, “Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression),” Int. J. Fract., 164, 83–102 (2010).CrossRef R. P. Janeiro and H. H. Einstein, “Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression),” Int. J. Fract., 164, 83–102 (2010).CrossRef
22.
go back to reference S. Q. Yang, “Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure,” Eng. Fract. Mech., 78, 3059–3081 (2011).CrossRef S. Q. Yang, “Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure,” Eng. Fract. Mech., 78, 3059–3081 (2011).CrossRef
23.
go back to reference H. Lee and S. Jeon, “An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression,” Int. J. Solids Struct., 48, 979–999 (2011).CrossRef H. Lee and S. Jeon, “An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression,” Int. J. Solids Struct., 48, 979–999 (2011).CrossRef
24.
go back to reference C. Pu and P. Cao, “Failure characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression,” Trans. Nonferrous Met. Soc. China, 22, 185–191 (2012).CrossRef C. Pu and P. Cao, “Failure characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression,” Trans. Nonferrous Met. Soc. China, 22, 185–191 (2012).CrossRef
25.
go back to reference F. Erdogan and G. C. Sih, “On the crack extension in plates under loading and transverse shear,” J. Basic Eng., 85, Issue 4, 519–525 (1963).CrossRef F. Erdogan and G. C. Sih, “On the crack extension in plates under loading and transverse shear,” J. Basic Eng., 85, Issue 4, 519–525 (1963).CrossRef
26.
go back to reference M. A. Hussian, E. L. Pu, and J. H. Underwood, “Strain energy release rate for a crack under combined mode I and mode II,” in: Fracture Analysis, ASTM STP 560, Philadelphia, PA (1974), pp. 2–28. M. A. Hussian, E. L. Pu, and J. H. Underwood, “Strain energy release rate for a crack under combined mode I and mode II,” in: Fracture Analysis, ASTM STP 560, Philadelphia, PA (1974), pp. 2–28.
27.
go back to reference G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fract., 10, 305–321 (1974).CrossRef G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fract., 10, 305–321 (1974).CrossRef
28.
go back to reference B. Shen and O. Stephansson, “Modification of the G-criterion for crack propagation subjected to compression,” Eng. Fract. Mech., 47, 177–189 (1994).CrossRef B. Shen and O. Stephansson, “Modification of the G-criterion for crack propagation subjected to compression,” Eng. Fract. Mech., 47, 177–189 (1994).CrossRef
29.
go back to reference M. F. Marji, H. Hosseini Nasab, and A. H. Kohsary, “On the uses of special crack tip elements in numerical rock fracture mechanics,” Int. J. Solids Struct., 43, Issue 6, 1669–1692 (2006).CrossRef M. F. Marji, H. Hosseini Nasab, and A. H. Kohsary, “On the uses of special crack tip elements in numerical rock fracture mechanics,” Int. J. Solids Struct., 43, Issue 6, 1669–1692 (2006).CrossRef
30.
go back to reference M. F. Marji and I. Dehghani, “Kinked crack analysis by a hybridized boundary element/boundary collocation method,” Int. J. Solids Struct., 47, Issue 7-8, 922–933 (2010).CrossRef M. F. Marji and I. Dehghani, “Kinked crack analysis by a hybridized boundary element/boundary collocation method,” Int. J. Solids Struct., 47, Issue 7-8, 922–933 (2010).CrossRef
31.
go back to reference M. F. Marji, “On the use of power series solution method in the crack analysis of brittle materials by indirect boundary element method,” Eng. Fract. Mech., 98, 365–382 (2013).CrossRef M. F. Marji, “On the use of power series solution method in the crack analysis of brittle materials by indirect boundary element method,” Eng. Fract. Mech., 98, 365–382 (2013).CrossRef
32.
go back to reference R. H. C. Wong, C. A. Tang, K. T. Chau, and P. Lin, “Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression,” Eng. Fract. Mech., 69, 1853–1871 (2002).CrossRef R. H. C. Wong, C. A. Tang, K. T. Chau, and P. Lin, “Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression,” Eng. Fract. Mech., 69, 1853–1871 (2002).CrossRef
33.
go back to reference S. L. Crouch, Analysis of Stresses and Displacements around Underground Excavations: An Application of the Displacement Discontinuity Method, Geomechanics Report, University of Minnesota, Minneapolis, MN (1976). S. L. Crouch, Analysis of Stresses and Displacements around Underground Excavations: An Application of the Displacement Discontinuity Method, Geomechanics Report, University of Minnesota, Minneapolis, MN (1976).
34.
go back to reference H. Guo, N. I. Aziz, and R. A. Schmidt, “Linear elastic crack tip modeling by displacement discontinuity method,” Eng. Fract. Mech., 36, 933–943 (1990).CrossRef H. Guo, N. I. Aziz, and R. A. Schmidt, “Linear elastic crack tip modeling by displacement discontinuity method,” Eng. Fract. Mech., 36, 933–943 (1990).CrossRef
35.
go back to reference C. Scavia, “Fracture mechanics approach to stability analysis of crack slopes,” Eng. Fract. Mech., 35, 889–910 (1990).CrossRef C. Scavia, “Fracture mechanics approach to stability analysis of crack slopes,” Eng. Fract. Mech., 35, 889–910 (1990).CrossRef
36.
go back to reference M. H. Aliabadi and D. P. Rooke, Numerical Fracture Mechanics, Computational Mechanics Publications, Southampton, UK (1991). M. H. Aliabadi and D. P. Rooke, Numerical Fracture Mechanics, Computational Mechanics Publications, Southampton, UK (1991).
37.
go back to reference H. Haeri, Numerical Modeling of the Interaction between Micro and Macro Cracks in the Rock Fracture Mechanism Using Displacement Discontinuity Method, Ph.D. Thesis, Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran (2011). H. Haeri, Numerical Modeling of the Interaction between Micro and Macro Cracks in the Rock Fracture Mechanism Using Displacement Discontinuity Method, Ph.D. Thesis, Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran (2011).
38.
go back to reference H. Haeri and A. K. Ahranjani, “A fuzzy logic model to predict crack propagation angle under disc cutters of TBM,” Int. J. Acad. Res., 4, No. 3, 159–169 (2012). H. Haeri and A. K. Ahranjani, “A fuzzy logic model to predict crack propagation angle under disc cutters of TBM,” Int. J. Acad. Res., 4, No. 3, 159–169 (2012).
39.
go back to reference G. R. Irwin, “Analysis of stress and strains near the end of a crack traversing a plate,” J. Appl. Mech., 24, 361–364 (1957). G. R. Irwin, “Analysis of stress and strains near the end of a crack traversing a plate,” J. Appl. Mech., 24, 361–364 (1957).
Metadata
Title
On the Strength and Crack Propagation Process of the Pre-Cracked Rock-Like Specimens under Uniaxial Compression
Authors
H. Haeri
K. Shahriar
M. F. Marji
P. Moarefvand
Publication date
01-01-2014
Publisher
Springer US
Published in
Strength of Materials / Issue 1/2014
Print ISSN: 0039-2316
Electronic ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-014-9525-y

Other articles of this Issue 1/2014

Strength of Materials 1/2014 Go to the issue

Premium Partners