Skip to main content
Erschienen in: Strength of Materials 1/2014

01.01.2014

On the Strength and Crack Propagation Process of the Pre-Cracked Rock-Like Specimens under Uniaxial Compression

verfasst von: H. Haeri, K. Shahriar, M. F. Marji, P. Moarefvand

Erschienen in: Strength of Materials | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The pre-cracked cylindrical specimens of rock-like materials are experimentally tested under compressive loading (using specially made rock-like specimens from portland pozzolana cement). The stress-strain and strength of the specimens are measured showing the decreasing effects of the cracks and their orientation on the final breakage stress of the specimen. The crack initiation and coalescence stresses during the crack propagation process are observed. The breakage process of the specimens is studied by inserting single and double cracks with different inclination angles at the center and applying uniaxial compressive stress at both ends of the specimen. The wing cracks are produced at the first stage of loading and start their propagation toward the direction of uniaxial compressive loading. The secondary cracks may also be produced in form of quasicoplanar and/or oblique cracks in a stable manner. The secondary cracks may eventually continue their propagation in the direction of the maximum principle stress. The same specimens are numerically simulated by an indirect boundary element method known as displacement discontinuity method. One may validate the results by the numerical and experimental results given in this study.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. R. Ingraffea, “Fracture propagation in rock,” in: Z. P. Bazant (Ed.), Mechanics of Geomaterials: Rocks, Concretes, Soils, Ch. 12, John Wiley & Sons, Chichester, New York (1985), pp. 219–258. A. R. Ingraffea, “Fracture propagation in rock,” in: Z. P. Bazant (Ed.), Mechanics of Geomaterials: Rocks, Concretes, Soils, Ch. 12, John Wiley & Sons, Chichester, New York (1985), pp. 219–258.
2.
Zurück zum Zitat H. Horii and S. Nemat-Nasser, Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure, J. Geophys. Res., 90, 3105–3125 (1985).CrossRef H. Horii and S. Nemat-Nasser, Compression-induced microcrack growth in brittle solids: Axial splitting and shear failure, J. Geophys. Res., 90, 3105–3125 (1985).CrossRef
3.
Zurück zum Zitat O. Reyes and H. H. Einstein, “Failure mechanism of fractured rock – a fracture coalescence model,” in: Proc. 7th Int. Congress of Rock Mechanics, Vol. 1 (1990), pp. 333–340. O. Reyes and H. H. Einstein, “Failure mechanism of fractured rock – a fracture coalescence model,” in: Proc. 7th Int. Congress of Rock Mechanics, Vol. 1 (1990), pp. 333–340.
4.
Zurück zum Zitat B. Shen, O. Stephansson, H. H. Einstein, and B. Ghahreman, “Coalescence of fractures under shear stress experiments,” J. Geophys. Res., 100, 5975–5990 (1995).CrossRef B. Shen, O. Stephansson, H. H. Einstein, and B. Ghahreman, “Coalescence of fractures under shear stress experiments,” J. Geophys. Res., 100, 5975–5990 (1995).CrossRef
5.
Zurück zum Zitat R. H. C. Wong and K. T. Chau, “Crack coalescence in a rock-like material containing two cracks,” Int. J. Rock Mech. Min. Sci., 35, 147–164 (1998).CrossRef R. H. C. Wong and K. T. Chau, “Crack coalescence in a rock-like material containing two cracks,” Int. J. Rock Mech. Min. Sci., 35, 147–164 (1998).CrossRef
6.
Zurück zum Zitat C. C. Ke, C. S. Chen, and C. H. Tu, “Determination of fracture toughness of anisotropic rocks by boundary element method,” Rock Mech. Rock Eng., 41, 509–538 (2008).CrossRef C. C. Ke, C. S. Chen, and C. H. Tu, “Determination of fracture toughness of anisotropic rocks by boundary element method,” Rock Mech. Rock Eng., 41, 509–538 (2008).CrossRef
7.
Zurück zum Zitat E. Hoek and Z. T. Bieniawski, “Brittle rock fracture propagation in rock under compression,” Int. J. Fract. Mech., 1, 137–155 (1965). E. Hoek and Z. T. Bieniawski, “Brittle rock fracture propagation in rock under compression,” Int. J. Fract. Mech., 1, 137–155 (1965).
8.
Zurück zum Zitat Z. T. Bieniawski, “Mechanism of brittle fracture of rock. Pt. II. Experimental studies,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 4, 407–23 (1967). Z. T. Bieniawski, “Mechanism of brittle fracture of rock. Pt. II. Experimental studies,” Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 4, 407–23 (1967).
9.
Zurück zum Zitat A. Bobet and H. H. Einstein, “Fracture coalescence in rock-type materials under uniaxial and biaxial compression,” Int. J. Rock Mech. Min. Sci., 35, 863–888 (1998).CrossRef A. Bobet and H. H. Einstein, “Fracture coalescence in rock-type materials under uniaxial and biaxial compression,” Int. J. Rock Mech. Min. Sci., 35, 863–888 (1998).CrossRef
10.
Zurück zum Zitat A. Bobet and H. H. Einstein, “Numerical modeling of fracture coalescence in a model rock material,” Int. J. Fract., 92, 221–252 (1998).CrossRef A. Bobet and H. H. Einstein, “Numerical modeling of fracture coalescence in a model rock material,” Int. J. Fract., 92, 221–252 (1998).CrossRef
11.
Zurück zum Zitat J. F. Huang, G. L. Chen, Y. H. Zhao, and R. Wang, “An experimental study of the strain field development prior to failure of a marble plate under compression,” Tectonophysics, 175, 269–284 (1990).CrossRef J. F. Huang, G. L. Chen, Y. H. Zhao, and R. Wang, “An experimental study of the strain field development prior to failure of a marble plate under compression,” Tectonophysics, 175, 269–284 (1990).CrossRef
12.
Zurück zum Zitat R. H. C. Wong, K. T. Chau, C. A. Tang, and P. Lin, “Analysis of crack coalescence in rock-like materials containing three flaws – Part I: experimental approach,” Int. J. Rock Mech. Min. Sci., 38, 909–924 (2001).CrossRef R. H. C. Wong, K. T. Chau, C. A. Tang, and P. Lin, “Analysis of crack coalescence in rock-like materials containing three flaws – Part I: experimental approach,” Int. J. Rock Mech. Min. Sci., 38, 909–924 (2001).CrossRef
13.
Zurück zum Zitat E. Sahouryeh, A. V. Dyskin, and L. N. Germanovich, “Crack growth under biaxial compression,” Eng. Fract. Mech., 69, 2187–2198 (2002).CrossRef E. Sahouryeh, A. V. Dyskin, and L. N. Germanovich, “Crack growth under biaxial compression,” Eng. Fract. Mech., 69, 2187–2198 (2002).CrossRef
14.
Zurück zum Zitat Y. P. Li, L. Z. Chen, and Y. H. Wang, “Experimental research on pre-cracked marble under compression,” Int. J. Solids Struct., 42, 2505–2516 (2005).CrossRef Y. P. Li, L. Z. Chen, and Y. H. Wang, “Experimental research on pre-cracked marble under compression,” Int. J. Solids Struct., 42, 2505–2516 (2005).CrossRef
15.
Zurück zum Zitat C. H. Park and A. Bobet, “The initiation of slip on frictional fractures,” in: 41st US Rock Mechanics Symposium, Paper 06–923, Golden, CO (2006). C. H. Park and A. Bobet, “The initiation of slip on frictional fractures,” in: 41st US Rock Mechanics Symposium, Paper 06–923, Golden, CO (2006).
16.
Zurück zum Zitat C. H. Park and A. Bobet, “Crack initiation and propagation from frictional fractures,” in: Proc. of the 1st Canada–US Rock Mechanics Symposium (2007), pp. 557–564. C. H. Park and A. Bobet, “Crack initiation and propagation from frictional fractures,” in: Proc. of the 1st Canada–US Rock Mechanics Symposium (2007), pp. 557–564.
17.
Zurück zum Zitat C. H. Park, Coalescence of Frictional Fractures in Rock Materials, Ph.D. Thesis, Purdue University, West Lafayette, IN (2008). C. H. Park, Coalescence of Frictional Fractures in Rock Materials, Ph.D. Thesis, Purdue University, West Lafayette, IN (2008).
18.
Zurück zum Zitat C. H. Park and A. Bobet, “Crack coalescence in specimens with open and closed flaws: A comparison,” Int. J. Rock Mech. Min. Sci., 46, 819–829 (2009).CrossRef C. H. Park and A. Bobet, “Crack coalescence in specimens with open and closed flaws: A comparison,” Int. J. Rock Mech. Min. Sci., 46, 819–829 (2009).CrossRef
19.
Zurück zum Zitat C. H. Park and A. Bobet, “Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression,” Eng. Fract. Mech., 77, 2727–2748 (2010).CrossRef C. H. Park and A. Bobet, “Crack initiation, propagation and coalescence from frictional flaws in uniaxial compression,” Eng. Fract. Mech., 77, 2727–2748 (2010).CrossRef
20.
Zurück zum Zitat S. Q. Yang, Y. H. Dai, L. J. Han, and Z. Q. Jin, “Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression,” Eng. Fract. Mech., 76, 1833–1845 (2009).CrossRef S. Q. Yang, Y. H. Dai, L. J. Han, and Z. Q. Jin, “Experimental study on mechanical behavior of brittle marble samples containing different flaws under uniaxial compression,” Eng. Fract. Mech., 76, 1833–1845 (2009).CrossRef
21.
Zurück zum Zitat R. P. Janeiro and H. H. Einstein, “Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression),” Int. J. Fract., 164, 83–102 (2010).CrossRef R. P. Janeiro and H. H. Einstein, “Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression),” Int. J. Fract., 164, 83–102 (2010).CrossRef
22.
Zurück zum Zitat S. Q. Yang, “Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure,” Eng. Fract. Mech., 78, 3059–3081 (2011).CrossRef S. Q. Yang, “Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure,” Eng. Fract. Mech., 78, 3059–3081 (2011).CrossRef
23.
Zurück zum Zitat H. Lee and S. Jeon, “An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression,” Int. J. Solids Struct., 48, 979–999 (2011).CrossRef H. Lee and S. Jeon, “An experimental and numerical study of fracture coalescence in pre-cracked specimens under uniaxial compression,” Int. J. Solids Struct., 48, 979–999 (2011).CrossRef
24.
Zurück zum Zitat C. Pu and P. Cao, “Failure characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression,” Trans. Nonferrous Met. Soc. China, 22, 185–191 (2012).CrossRef C. Pu and P. Cao, “Failure characteristics and its influencing factors of rock-like material with multi-fissures under uniaxial compression,” Trans. Nonferrous Met. Soc. China, 22, 185–191 (2012).CrossRef
25.
Zurück zum Zitat F. Erdogan and G. C. Sih, “On the crack extension in plates under loading and transverse shear,” J. Basic Eng., 85, Issue 4, 519–525 (1963).CrossRef F. Erdogan and G. C. Sih, “On the crack extension in plates under loading and transverse shear,” J. Basic Eng., 85, Issue 4, 519–525 (1963).CrossRef
26.
Zurück zum Zitat M. A. Hussian, E. L. Pu, and J. H. Underwood, “Strain energy release rate for a crack under combined mode I and mode II,” in: Fracture Analysis, ASTM STP 560, Philadelphia, PA (1974), pp. 2–28. M. A. Hussian, E. L. Pu, and J. H. Underwood, “Strain energy release rate for a crack under combined mode I and mode II,” in: Fracture Analysis, ASTM STP 560, Philadelphia, PA (1974), pp. 2–28.
27.
Zurück zum Zitat G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fract., 10, 305–321 (1974).CrossRef G. C. Sih, “Strain-energy-density factor applied to mixed mode crack problems,” Int. J. Fract., 10, 305–321 (1974).CrossRef
28.
Zurück zum Zitat B. Shen and O. Stephansson, “Modification of the G-criterion for crack propagation subjected to compression,” Eng. Fract. Mech., 47, 177–189 (1994).CrossRef B. Shen and O. Stephansson, “Modification of the G-criterion for crack propagation subjected to compression,” Eng. Fract. Mech., 47, 177–189 (1994).CrossRef
29.
Zurück zum Zitat M. F. Marji, H. Hosseini Nasab, and A. H. Kohsary, “On the uses of special crack tip elements in numerical rock fracture mechanics,” Int. J. Solids Struct., 43, Issue 6, 1669–1692 (2006).CrossRef M. F. Marji, H. Hosseini Nasab, and A. H. Kohsary, “On the uses of special crack tip elements in numerical rock fracture mechanics,” Int. J. Solids Struct., 43, Issue 6, 1669–1692 (2006).CrossRef
30.
Zurück zum Zitat M. F. Marji and I. Dehghani, “Kinked crack analysis by a hybridized boundary element/boundary collocation method,” Int. J. Solids Struct., 47, Issue 7-8, 922–933 (2010).CrossRef M. F. Marji and I. Dehghani, “Kinked crack analysis by a hybridized boundary element/boundary collocation method,” Int. J. Solids Struct., 47, Issue 7-8, 922–933 (2010).CrossRef
31.
Zurück zum Zitat M. F. Marji, “On the use of power series solution method in the crack analysis of brittle materials by indirect boundary element method,” Eng. Fract. Mech., 98, 365–382 (2013).CrossRef M. F. Marji, “On the use of power series solution method in the crack analysis of brittle materials by indirect boundary element method,” Eng. Fract. Mech., 98, 365–382 (2013).CrossRef
32.
Zurück zum Zitat R. H. C. Wong, C. A. Tang, K. T. Chau, and P. Lin, “Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression,” Eng. Fract. Mech., 69, 1853–1871 (2002).CrossRef R. H. C. Wong, C. A. Tang, K. T. Chau, and P. Lin, “Splitting failure in brittle rocks containing pre-existing flaws under uniaxial compression,” Eng. Fract. Mech., 69, 1853–1871 (2002).CrossRef
33.
Zurück zum Zitat S. L. Crouch, Analysis of Stresses and Displacements around Underground Excavations: An Application of the Displacement Discontinuity Method, Geomechanics Report, University of Minnesota, Minneapolis, MN (1976). S. L. Crouch, Analysis of Stresses and Displacements around Underground Excavations: An Application of the Displacement Discontinuity Method, Geomechanics Report, University of Minnesota, Minneapolis, MN (1976).
34.
Zurück zum Zitat H. Guo, N. I. Aziz, and R. A. Schmidt, “Linear elastic crack tip modeling by displacement discontinuity method,” Eng. Fract. Mech., 36, 933–943 (1990).CrossRef H. Guo, N. I. Aziz, and R. A. Schmidt, “Linear elastic crack tip modeling by displacement discontinuity method,” Eng. Fract. Mech., 36, 933–943 (1990).CrossRef
35.
Zurück zum Zitat C. Scavia, “Fracture mechanics approach to stability analysis of crack slopes,” Eng. Fract. Mech., 35, 889–910 (1990).CrossRef C. Scavia, “Fracture mechanics approach to stability analysis of crack slopes,” Eng. Fract. Mech., 35, 889–910 (1990).CrossRef
36.
Zurück zum Zitat M. H. Aliabadi and D. P. Rooke, Numerical Fracture Mechanics, Computational Mechanics Publications, Southampton, UK (1991). M. H. Aliabadi and D. P. Rooke, Numerical Fracture Mechanics, Computational Mechanics Publications, Southampton, UK (1991).
37.
Zurück zum Zitat H. Haeri, Numerical Modeling of the Interaction between Micro and Macro Cracks in the Rock Fracture Mechanism Using Displacement Discontinuity Method, Ph.D. Thesis, Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran (2011). H. Haeri, Numerical Modeling of the Interaction between Micro and Macro Cracks in the Rock Fracture Mechanism Using Displacement Discontinuity Method, Ph.D. Thesis, Department of Mining Engineering, Science and Research Branch, Islamic Azad University, Tehran, Iran (2011).
38.
Zurück zum Zitat H. Haeri and A. K. Ahranjani, “A fuzzy logic model to predict crack propagation angle under disc cutters of TBM,” Int. J. Acad. Res., 4, No. 3, 159–169 (2012). H. Haeri and A. K. Ahranjani, “A fuzzy logic model to predict crack propagation angle under disc cutters of TBM,” Int. J. Acad. Res., 4, No. 3, 159–169 (2012).
39.
Zurück zum Zitat G. R. Irwin, “Analysis of stress and strains near the end of a crack traversing a plate,” J. Appl. Mech., 24, 361–364 (1957). G. R. Irwin, “Analysis of stress and strains near the end of a crack traversing a plate,” J. Appl. Mech., 24, 361–364 (1957).
Metadaten
Titel
On the Strength and Crack Propagation Process of the Pre-Cracked Rock-Like Specimens under Uniaxial Compression
verfasst von
H. Haeri
K. Shahriar
M. F. Marji
P. Moarefvand
Publikationsdatum
01.01.2014
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 1/2014
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-014-9525-y

Weitere Artikel der Ausgabe 1/2014

Strength of Materials 1/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.