Skip to main content
Erschienen in: Strength of Materials 1/2014

01.01.2014

Fracture Resistance of Sheet Metals and Thin-Wall Structures. Part 1. Critical Review

verfasst von: V. P. Naumenko, I. V. Limanskii

Erschienen in: Strength of Materials | Ausgabe 1/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This paper considers the basic principles of the most widespread methods for determining typical states of a mode I through crack in specimens and structures of sheet metals that are fractured under conditions close to the plane stress state. The results of experimental investigations are presented which make it possible to judge of the relative advantages and disadvantages of these methods from the standpoint of their possible use in engineering assessments of the integrity and remaining strength of thin-wall structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat A. A. Griffith, “The phenomena of rupture and flow in solids,” Phil. Trans. Roy. Soc. London, 221A, 163–198 (1921).CrossRef A. A. Griffith, “The phenomena of rupture and flow in solids,” Phil. Trans. Roy. Soc. London, 221A, 163–198 (1921).CrossRef
2.
Zurück zum Zitat SINTAP. EU-Project BE 95-1462: Final Report, Brite Euram Programme, Brussels (1999). SINTAP. EU-Project BE 95-1462: Final Report, Brite Euram Programme, Brussels (1999).
3.
Zurück zum Zitat W. Kocak, S. Webster, J. J. Janosc, et al. (Eds). FITNET Fitness-for-Service (FFS) Procedure, GKSS Research Centre, ISBN 978-3-940923-00-4 (2008), Vol. 1, Revision MK8. W. Kocak, S. Webster, J. J. Janosc, et al. (Eds). FITNET Fitness-for-Service (FFS) Procedure, GKSS Research Centre, ISBN 978-3-940923-00-4 (2008), Vol. 1, Revision MK8.
4.
Zurück zum Zitat R6. Assessment of the Integrity of Structures Containing Defects, Report R6, Revision 4, with Amendment 7, British Energy Generation, Gloucecter, UK (2009). R6. Assessment of the Integrity of Structures Containing Defects, Report R6, Revision 4, with Amendment 7, British Energy Generation, Gloucecter, UK (2009).
5.
Zurück zum Zitat API 579. Recommended Practice for Fitness-for-Service, API, Washington, D.C. (2000). API 579. Recommended Practice for Fitness-for-Service, API, Washington, D.C. (2000).
6.
Zurück zum Zitat M. Schödel, U. Zerbst, and C. Dalle Donne, “Application of the European flaw assessment procedure SINTAP to thin wall structures subjected to biaxial and mixed mode loadings,” Eng. Fract. Mech., 73, 626–642 (2006).CrossRef M. Schödel, U. Zerbst, and C. Dalle Donne, “Application of the European flaw assessment procedure SINTAP to thin wall structures subjected to biaxial and mixed mode loadings,” Eng. Fract. Mech., 73, 626–642 (2006).CrossRef
7.
Zurück zum Zitat U. Zerbst, A. Pempe, I. Scheider, et al. “Proposed extension of the SINTAP/FITNET thin wall option based on a simple method for reference load determination,” Eng. Fract. Mech., 76, 74–87 (2009).CrossRef U. Zerbst, A. Pempe, I. Scheider, et al. “Proposed extension of the SINTAP/FITNET thin wall option based on a simple method for reference load determination,” Eng. Fract. Mech., 76, 74–87 (2009).CrossRef
8.
Zurück zum Zitat ISO-27306. Metallic Materials – Method of Constraint Loss Correction of CTOD Fracture Toughness for Fracture Assessment of Steel Components, International Organization for Standardization (2009). ISO-27306. Metallic Materials – Method of Constraint Loss Correction of CTOD Fracture Toughness for Fracture Assessment of Steel Components, International Organization for Standardization (2009).
9.
Zurück zum Zitat E561-92a. Standard Practice for R-Curve Determination, ASTM Standard (1992). E561-92a. Standard Practice for R-Curve Determination, ASTM Standard (1992).
10.
Zurück zum Zitat E1820-01. Standard Test Method for Measurement of Fracture Toughness, ASTM Standard (2001). E1820-01. Standard Test Method for Measurement of Fracture Toughness, ASTM Standard (2001).
11.
Zurück zum Zitat E8M-93. Standard Test Method for Tension Testing of Metallic Materials, ASTM Standard (1993). E8M-93. Standard Test Method for Tension Testing of Metallic Materials, ASTM Standard (1993).
12.
Zurück zum Zitat ISO 6892-1998(E). Metallic Materials – Tensile Testing at Ambient Temperature, ISO Standard (1998). ISO 6892-1998(E). Metallic Materials – Tensile Testing at Ambient Temperature, ISO Standard (1998).
13.
Zurück zum Zitat G. S. Pisarenko, V. P. Naumenko, and G. S. Volkov, “Effect of plastic constraint on the fracture toughness of ductile steels,” Strength Mater., 9, No. 11, 1325–1332 (1977).CrossRef G. S. Pisarenko, V. P. Naumenko, and G. S. Volkov, “Effect of plastic constraint on the fracture toughness of ductile steels,” Strength Mater., 9, No. 11, 1325–1332 (1977).CrossRef
14.
Zurück zum Zitat G. S. Pisarenko, V. P. Naumenko, and G. S. Volkov, Determination of Material Fracture Toughness Based on the Energy Contour Integral [in Russian], Naukova Dumka, Kiev (1978). G. S. Pisarenko, V. P. Naumenko, and G. S. Volkov, Determination of Material Fracture Toughness Based on the Energy Contour Integral [in Russian], Naukova Dumka, Kiev (1978).
15.
Zurück zum Zitat G. S. Pisarenko and V. P. Naumenko, “Experimental methods of material fracture mechanics,” Fiz.-Khim. Mekh. Mater., No. 2, 28–41 (1982). G. S. Pisarenko and V. P. Naumenko, “Experimental methods of material fracture mechanics,” Fiz.-Khim. Mekh. Mater., No. 2, 28–41 (1982).
16.
Zurück zum Zitat G. S. Pisarenko, V. P. Naumenko, and Å. Å. Onishchenko, Elasto-Plastic Mode I Fracture Mode I Fracture of Thin-Sheet Steel under Biaxial Loading [in Russian], Preprint, Institute of Problems of Strength, Academy of Sciences of UkrSSR, Kiev (1983). G. S. Pisarenko, V. P. Naumenko, and Å. Å. Onishchenko, Elasto-Plastic Mode I Fracture Mode I Fracture of Thin-Sheet Steel under Biaxial Loading [in Russian], Preprint, Institute of Problems of Strength, Academy of Sciences of UkrSSR, Kiev (1983).
17.
Zurück zum Zitat V. P. Naumenko and A. I. Semenets, Fracture Toughness and Strength of Large-Scale Plates of Aluminum Alloys [in Russian], Preprint, Institute of Problems of Strength, Academy of Sciences of UkrSSR, Kiev (1990). V. P. Naumenko and A. I. Semenets, Fracture Toughness and Strength of Large-Scale Plates of Aluminum Alloys [in Russian], Preprint, Institute of Problems of Strength, Academy of Sciences of UkrSSR, Kiev (1990).
18.
Zurück zum Zitat V. P. Naumenko and V. A. Rakovsky, “Crack growth onset in biaxially loaded elasto-plastic plates,” in: J. C. Blouel and K.-H. Schwalbe (Eds.), Defect Assessment in Components – Fundamentals and Applications (ESIS/ECF9), London (1991), pp. 363–377. V. P. Naumenko and V. A. Rakovsky, “Crack growth onset in biaxially loaded elasto-plastic plates,” in: J. C. Blouel and K.-H. Schwalbe (Eds.), Defect Assessment in Components – Fundamentals and Applications (ESIS/ECF9), London (1991), pp. 363–377.
19.
Zurück zum Zitat V. P. Naumenko, “The Griffith problem and Mode I fracture in tension and compression,” Fiz.-Khim. Mekh. Mater., No. 4, 75–86 (1993). V. P. Naumenko, “The Griffith problem and Mode I fracture in tension and compression,” Fiz.-Khim. Mekh. Mater., No. 4, 75–86 (1993).
20.
Zurück zum Zitat V. P. Naumenko and O. Kolednik, “Load biaxiality effects on the fracture resistance of thin steel plates,” in: Structural Integrity: Experiments, Models and Applications, Berlin (1994), pp. 911–917. V. P. Naumenko and O. Kolednik, “Load biaxiality effects on the fracture resistance of thin steel plates,” in: Structural Integrity: Experiments, Models and Applications, Berlin (1994), pp. 911–917.
21.
Zurück zum Zitat V. P. Naumenko, O. Kolednik, N. P. O’Dowd, et al. “Transferability of plane-stress R-curves: effect of specimen size and crack length,” in: M. W. Brown, E. R. de los Rois, and K. J. Miller (Eds.), Fracture from Defects (Proc. of the ECF12), Vol. 2 (1998), pp. 631–636. V. P. Naumenko, O. Kolednik, N. P. O’Dowd, et al. “Transferability of plane-stress R-curves: effect of specimen size and crack length,” in: M. W. Brown, E. R. de los Rois, and K. J. Miller (Eds.), Fracture from Defects (Proc. of the ECF12), Vol. 2 (1998), pp. 631–636.
22.
Zurück zum Zitat V. P. Naumenko, O. Kolednik, N. P. O’Dowd, and G. S. Volkov, “Effect of constraint on resistance to stable crack growth in thin aluminium plates,” in: V. T. Troshchenko (Ed.), Life Assessment and Management for Structural Components, Vol. 1, Kiev (2000), pp. 299–304. V. P. Naumenko, O. Kolednik, N. P. O’Dowd, and G. S. Volkov, “Effect of constraint on resistance to stable crack growth in thin aluminium plates,” in: V. T. Troshchenko (Ed.), Life Assessment and Management for Structural Components, Vol. 1, Kiev (2000), pp. 299–304.
23.
Zurück zum Zitat V. P. Naumenko, “Single-parameter prediction of stable crack growth in large-scale panels,” in: A. Neimitz, I. V. Rokach, D. Kocanda, and K. Golos (Eds.), Proc. of the Fourteenth Europ. Conf. on Fracture, EMAS, Vol. 2, Sheffield (2002), pp. 543–550. V. P. Naumenko, “Single-parameter prediction of stable crack growth in large-scale panels,” in: A. Neimitz, I. V. Rokach, D. Kocanda, and K. Golos (Eds.), Proc. of the Fourteenth Europ. Conf. on Fracture, EMAS, Vol. 2, Sheffield (2002), pp. 543–550.
24.
Zurück zum Zitat V. P. Naumenko and G. S. Volkov, “Engineering assessment of tear cracks in large-scale panels from thin-sheet aluminium,” in: Proc. of the 6th Int. Conf. on Engineering Structural Integrity Assessment, Manchester (2002). V. P. Naumenko and G. S. Volkov, “Engineering assessment of tear cracks in large-scale panels from thin-sheet aluminium,” in: Proc. of the 6th Int. Conf. on Engineering Structural Integrity Assessment, Manchester (2002).
25.
Zurück zum Zitat V. P. Naumenko and G. S. Volkov, “Assessment of plane stress tearing in terms of various crack driving parameters,” in: S. R. Daniewicz, J. C. Newman and K.-H. Schwalbe (Eds.), Proc. of the ASTM-ESIS Conf. on Fatigue and Fracture Mechanics, ASTM STP 1461, West Conshohocken, PA (2003). V. P. Naumenko and G. S. Volkov, “Assessment of plane stress tearing in terms of various crack driving parameters,” in: S. R. Daniewicz, J. C. Newman and K.-H. Schwalbe (Eds.), Proc. of the ASTM-ESIS Conf. on Fatigue and Fracture Mechanics, ASTM STP 1461, West Conshohocken, PA (2003).
26.
Zurück zum Zitat G. S. Pisarenko, V. P. Naumenko, and V. M. Stepkov, “Results of an experimental investigation of fracture kinetics and crack resistance of brittle materials,” Strength Mater., 16, No. 12, 1694–1701 (1984).CrossRef G. S. Pisarenko, V. P. Naumenko, and V. M. Stepkov, “Results of an experimental investigation of fracture kinetics and crack resistance of brittle materials,” Strength Mater., 16, No. 12, 1694–1701 (1984).CrossRef
27.
Zurück zum Zitat V. P. Naumenko and O. V. Mitchenko, “Brittle fracture of a sheet with a hole in compression,” Strength Mater., 17, No. 7, 890–900 (1985).CrossRef V. P. Naumenko and O. V. Mitchenko, “Brittle fracture of a sheet with a hole in compression,” Strength Mater., 17, No. 7, 890–900 (1985).CrossRef
28.
Zurück zum Zitat G. S. Pisarenko, V. P. Naumenko, and N. I. Nedelchev, “Crack resistance of brittle materials. What is it?” Strength Mater., 17, No. 11, 1497–1506 (1985).CrossRef G. S. Pisarenko, V. P. Naumenko, and N. I. Nedelchev, “Crack resistance of brittle materials. What is it?” Strength Mater., 17, No. 11, 1497–1506 (1985).CrossRef
29.
Zurück zum Zitat V. P. Naumenko and A. L. Maistrenko, “Determination of fracture toughness of brittle nonmetallic materials,” Zavod. Lab., No. 4, 63–70 (1985). V. P. Naumenko and A. L. Maistrenko, “Determination of fracture toughness of brittle nonmetallic materials,” Zavod. Lab., No. 4, 63–70 (1985).
30.
Zurück zum Zitat G. S. Pisarenko, V. P. Naumenko, and V. M. Stepkov, “Brittle fracture under uniaxial and biaxial loading,” in: Strength of Materials and Structural Elements under a Complex Stress State [in Russian], Naukova Dumka, Kiev (1986), pp. 196–201. G. S. Pisarenko, V. P. Naumenko, and V. M. Stepkov, “Brittle fracture under uniaxial and biaxial loading,” in: Strength of Materials and Structural Elements under a Complex Stress State [in Russian], Naukova Dumka, Kiev (1986), pp. 196–201.
31.
Zurück zum Zitat V. P. Naumenko, “Determination of fracture toughness for brittle nonmetallic materials at the subcritical crack growth stage,” J. Test. Eval., 14, No. 2, 76–80 (1986).CrossRef V. P. Naumenko, “Determination of fracture toughness for brittle nonmetallic materials at the subcritical crack growth stage,” J. Test. Eval., 14, No. 2, 76–80 (1986).CrossRef
32.
Zurück zum Zitat V. P. Naumenko, “Modelling of brittle fracture in tension and compression,” in: Fracture Processes in Concrete, Rock, and Ceramics, Proc. Int. RILEM/ESIS Conference (1991), pp. 183–192. V. P. Naumenko, “Modelling of brittle fracture in tension and compression,” in: Fracture Processes in Concrete, Rock, and Ceramics, Proc. Int. RILEM/ESIS Conference (1991), pp. 183–192.
33.
Zurück zum Zitat V. P. Naumenko, “Macrocrack initiation and growth in compression and tension,” Fiz.-Khim. Mekh. Mater., No. 5, 62–66 (1991). V. P. Naumenko, “Macrocrack initiation and growth in compression and tension,” Fiz.-Khim. Mekh. Mater., No. 5, 62–66 (1991).
34.
Zurück zum Zitat V. P. Naumenko, Yu. D. Skrypnyk, and N. I. Nedelchev, “Constraint-dependent fracture toughness of glass and PMMA,” in: Proc. 11th Int. Conf. on Fracture, Turin (2005), pp. 71–76. V. P. Naumenko, Yu. D. Skrypnyk, and N. I. Nedelchev, “Constraint-dependent fracture toughness of glass and PMMA,” in: Proc. 11th Int. Conf. on Fracture, Turin (2005), pp. 71–76.
35.
Zurück zum Zitat A. L. Hizer, “Specimen size effect on J-R curves for RPV steels,” in: ASTM STP 1171 (1993), pp. 195–238. A. L. Hizer, “Specimen size effect on J-R curves for RPV steels,” in: ASTM STP 1171 (1993), pp. 195–238.
36.
Zurück zum Zitat J. D Landes, “Extrapolation of the J-R curve for predicting reactor pressure vessel integrity,” in: Nuclear Regulatory Commission Report NUREG/CR-5650 (1992). J. D Landes, “Extrapolation of the J-R curve for predicting reactor pressure vessel integrity,” in: Nuclear Regulatory Commission Report NUREG/CR-5650 (1992).
37.
Zurück zum Zitat A. L Hizer, G. B. Terrel, and W. A. van der Sluys, “Size effect on j-r curves for A302-B plate,” in: Nuclear Regulatory Commission Report NUREG/CR-5265 (1989). A. L Hizer, G. B. Terrel, and W. A. van der Sluys, “Size effect on j-r curves for A302-B plate,” in: Nuclear Regulatory Commission Report NUREG/CR-5265 (1989).
38.
Zurück zum Zitat Lin Xia, C. F. Shih, and J. W. Hutchinson, “A computational approach to ductile crack growth under large scale yielding conditions,” J. Mech. Phys. Solids, 43, 389–413 (1995).CrossRef Lin Xia, C. F. Shih, and J. W. Hutchinson, “A computational approach to ductile crack growth under large scale yielding conditions,” J. Mech. Phys. Solids, 43, 389–413 (1995).CrossRef
39.
Zurück zum Zitat T. Pardoen and J. W. Hutchinson, “An extended model for void growth and coalescence,” J. Mech. Phys. Solids, 48, 2467–2512 (2000).CrossRef T. Pardoen and J. W. Hutchinson, “An extended model for void growth and coalescence,” J. Mech. Phys. Solids, 48, 2467–2512 (2000).CrossRef
40.
Zurück zum Zitat “RILEM Draft Recommendation. Determination of fracture energy of mortar and concrete by means of three-point bend tests on notched beams,” Mater. Struct., 18, 286–290 (1985). “RILEM Draft Recommendation. Determination of fracture energy of mortar and concrete by means of three-point bend tests on notched beams,” Mater. Struct., 18, 286–290 (1985).
41.
Zurück zum Zitat V. Tvergaard and J. W. Hutchinson, “The relation between crack growth resistance and fracture process parameters in elastic-plastic solids,” J. Mech. Phys. Solids, 40, 1377–1397 (1992).CrossRef V. Tvergaard and J. W. Hutchinson, “The relation between crack growth resistance and fracture process parameters in elastic-plastic solids,” J. Mech. Phys. Solids, 40, 1377–1397 (1992).CrossRef
42.
Zurück zum Zitat Y. Wey, X. Qiu, and K. C. Hwang, “Steady-state crack growth and fracture work based on the theory of mechanism-based strain gradient plasticity,” Eng. Fract. Mech., 71, 107–125 (2004).CrossRef Y. Wey, X. Qiu, and K. C. Hwang, “Steady-state crack growth and fracture work based on the theory of mechanism-based strain gradient plasticity,” Eng. Fract. Mech., 71, 107–125 (2004).CrossRef
43.
Zurück zum Zitat S. Xu and X. Zhang, “Determination of fracture parameters for crack propagation in concrete using energy approach,” Eng. Fract. Mech., 75, 4292–4308 (2008).CrossRef S. Xu and X. Zhang, “Determination of fracture parameters for crack propagation in concrete using energy approach,” Eng. Fract. Mech., 75, 4292–4308 (2008).CrossRef
44.
Zurück zum Zitat Hu X. and F. Wittman, “Size effect on toughness induced by crack close to free surface,” Eng. Fract. Mech., 65, 209–221 (2000). Hu X. and F. Wittman, “Size effect on toughness induced by crack close to free surface,” Eng. Fract. Mech., 65, 209–221 (2000).
45.
Zurück zum Zitat J. D. G. Sumpter, “An alternative view of R curve testing,” Eng. Fract. Mech., 64, 161–176 (1999).CrossRef J. D. G. Sumpter, “An alternative view of R curve testing,” Eng. Fract. Mech., 64, 161–176 (1999).CrossRef
46.
Zurück zum Zitat J. D. G. Sumpter, “The energy dissipation rate approach to tearing instability,” Eng. Fract. Mech., 71, 17–37 (2004).CrossRef J. D. G. Sumpter, “The energy dissipation rate approach to tearing instability,” Eng. Fract. Mech., 71, 17–37 (2004).CrossRef
47.
Zurück zum Zitat J. D. G. Sumpter, “Size effects in tearing instability: An analysis based on energy dissipation rate,” Eng. Fract. Mech., 74, 2352–2374 (2007).CrossRef J. D. G. Sumpter, “Size effects in tearing instability: An analysis based on energy dissipation rate,” Eng. Fract. Mech., 74, 2352–2374 (2007).CrossRef
48.
Zurück zum Zitat B. Cotterell and A. G. Atkins, “A review of the J and I integrals and their implications for crack growth resistance and toughness in ductile fracture,” Int. J. Fract., 81, No. 4, 357–372 (1996).CrossRef B. Cotterell and A. G. Atkins, “A review of the J and I integrals and their implications for crack growth resistance and toughness in ductile fracture,” Int. J. Fract., 81, No. 4, 357–372 (1996).CrossRef
49.
Zurück zum Zitat S. G. Larsson and A. J. Carlsson, “Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials,” J. Mech. Phys. Solids, 22, No. 4, 263–277 (1973).CrossRef S. G. Larsson and A. J. Carlsson, “Influence of non-singular stress terms and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials,” J. Mech. Phys. Solids, 22, No. 4, 263–277 (1973).CrossRef
50.
Zurück zum Zitat J. R. Rice, “Limitations to the small scale yielding approximation for crack tip plasticity,” J. Mech. Phys. Solids, 22, No. 1, 17–26 (1974).CrossRef J. R. Rice, “Limitations to the small scale yielding approximation for crack tip plasticity,” J. Mech. Phys. Solids, 22, No. 1, 17–26 (1974).CrossRef
51.
Zurück zum Zitat P. C. Leevers and J. C. Radon, “Inherent stress biaxiality in various fracture specimen geometries,” Int. J. Fract., 19, No. 4, 311–323 (1982).CrossRef P. C. Leevers and J. C. Radon, “Inherent stress biaxiality in various fracture specimen geometries,” Int. J. Fract., 19, No. 4, 311–323 (1982).CrossRef
52.
Zurück zum Zitat T. L. Anderson, “Crack tip parameters for large scale yielding and low constraint configurations,” Int. J. Fract., 41, 79–104 (1989).CrossRef T. L. Anderson, “Crack tip parameters for large scale yielding and low constraint configurations,” Int. J. Fract., 41, 79–104 (1989).CrossRef
53.
Zurück zum Zitat A. M. Al-Ani and S. W. Hancock, “J-dominance of short crack in tension and bending,” J. Mech. Phys. Solids, 39, 23–43 (1991).CrossRef A. M. Al-Ani and S. W. Hancock, “J-dominance of short crack in tension and bending,” J. Mech. Phys. Solids, 39, 23–43 (1991).CrossRef
54.
Zurück zum Zitat N. P. O’Dowd and C. F. Shih, “Family of crack-tip fields characterized by a triaxiality parameter. I. Structure of fields,” J. Mech. Phys. Solids, 39, 989–1015 (1991).CrossRef N. P. O’Dowd and C. F. Shih, “Family of crack-tip fields characterized by a triaxiality parameter. I. Structure of fields,” J. Mech. Phys. Solids, 39, 989–1015 (1991).CrossRef
55.
Zurück zum Zitat N. P. O’Dowd and C. F. Shih, “Family of crack-tip fields characterized by triaxiality parameter. II. Fracture applications,” J. Mech. Phys. Solids, 40, 939–963 (1992).CrossRef N. P. O’Dowd and C. F. Shih, “Family of crack-tip fields characterized by triaxiality parameter. II. Fracture applications,” J. Mech. Phys. Solids, 40, 939–963 (1992).CrossRef
56.
Zurück zum Zitat Y. J. Chao, S. Yang, and M. A. Sutton, “On the fracture of solids characterized by one or two parameters: Theory and practice,” J. Mech. Phys. Solids, 42, 629–647 (1994).CrossRef Y. J. Chao, S. Yang, and M. A. Sutton, “On the fracture of solids characterized by one or two parameters: Theory and practice,” J. Mech. Phys. Solids, 42, 629–647 (1994).CrossRef
57.
Zurück zum Zitat N. P. O’Dowd, O. Kolednik, and V. P. Naumenko, “Elastic-plastic analysis of biaxially loaded centercracked plates,” Int. J. Solids Struct., 36, 5639–5661 (1999).CrossRef N. P. O’Dowd, O. Kolednik, and V. P. Naumenko, “Elastic-plastic analysis of biaxially loaded centercracked plates,” Int. J. Solids Struct., 36, 5639–5661 (1999).CrossRef
58.
Zurück zum Zitat M. Schödel and U. Zerbst, “Application of the European flaw assessment procedure SINTAP to thin wall structures,” Eng. Fract. Mech., 71, 1035–1058 (2004).CrossRef M. Schödel and U. Zerbst, “Application of the European flaw assessment procedure SINTAP to thin wall structures,” Eng. Fract. Mech., 71, 1035–1058 (2004).CrossRef
59.
Zurück zum Zitat K.-H. Schwalbe, J. C. Newman, Jr., and J. Shannon, Jr., “Fracture mechanics testing on specimens with low constraint-standardization activities within ISO and ASTM,” Eng. Fract. Mech., 72, 557–576 (2005).CrossRef K.-H. Schwalbe, J. C. Newman, Jr., and J. Shannon, Jr., “Fracture mechanics testing on specimens with low constraint-standardization activities within ISO and ASTM,” Eng. Fract. Mech., 72, 557–576 (2005).CrossRef
60.
Zurück zum Zitat E2472-06. Standard Test Method for Determination of Resistance to Stable Crack Extension under Low-Constraint Conditions, ASTM Standard (2007). E2472-06. Standard Test Method for Determination of Resistance to Stable Crack Extension under Low-Constraint Conditions, ASTM Standard (2007).
61.
Zurück zum Zitat ISO 22889. Metallic Materials – Method of Test for the Determination of Resistance to Stable Crack Extension Using Specimens of Low Constraint, International Standard (2007). ISO 22889. Metallic Materials – Method of Test for the Determination of Resistance to Stable Crack Extension Using Specimens of Low Constraint, International Standard (2007).
62.
Zurück zum Zitat B. R Seshadri., J. C. Newman, Jr., and D. C. Dawicke, “Residual strength analyses of stiffened and unstiffened panels,” Eng. Fract. Mech., 70, 509–524 (2003). B. R Seshadri., J. C. Newman, Jr., and D. C. Dawicke, “Residual strength analyses of stiffened and unstiffened panels,” Eng. Fract. Mech., 70, 509–524 (2003).
63.
Zurück zum Zitat R. W. Hampton and D. Nelson, “Stable crack growth and instability prediction in thin plates and cylinders,” Eng. Fract. Mech., 70, 469–491 (2003).CrossRef R. W. Hampton and D. Nelson, “Stable crack growth and instability prediction in thin plates and cylinders,” Eng. Fract. Mech., 70, 469–491 (2003).CrossRef
64.
Zurück zum Zitat D. L. Rudland, G. M. Wilkowski, Z. Feng, et al., “Experimental investigation of CTOA in line-pipe steels,” Eng. Fract. Mech., 70, 567–577 (2003).CrossRef D. L. Rudland, G. M. Wilkowski, Z. Feng, et al., “Experimental investigation of CTOA in line-pipe steels,” Eng. Fract. Mech., 70, 567–577 (2003).CrossRef
65.
Zurück zum Zitat Ph. P. Darcis, C. N. McCowan, H. Windhoff, et al., “Crack tip opening angle optical measurement methods in five pipe-line steels,” Eng. Fract. Mech., 75, 2453–2468 (2008).CrossRef Ph. P. Darcis, C. N. McCowan, H. Windhoff, et al., “Crack tip opening angle optical measurement methods in five pipe-line steels,” Eng. Fract. Mech., 75, 2453–2468 (2008).CrossRef
66.
Zurück zum Zitat S. Xu, W. R. Tyson, and R. Bouchard, “Experimental validation of simplified single-specimen CTOA method for DWTT specimens,” in: Proc. 12th Int. Conf. on Fracture, Paper T35.018, Ottawa (2009). S. Xu, W. R. Tyson, and R. Bouchard, “Experimental validation of simplified single-specimen CTOA method for DWTT specimens,” in: Proc. 12th Int. Conf. on Fracture, Paper T35.018, Ottawa (2009).
67.
Zurück zum Zitat V. P. Naumenko, S. V. Lenzion, and I. V. Limansky, “Displacement-based assessment of ductile tearing under low-constraint conditions,” The Open Mech. Eng. J., 2, 40–59 (2008).CrossRef V. P. Naumenko, S. V. Lenzion, and I. V. Limansky, “Displacement-based assessment of ductile tearing under low-constraint conditions,” The Open Mech. Eng. J., 2, 40–59 (2008).CrossRef
68.
Zurück zum Zitat J. Eftis and H. Liebowitz, “On the modified Westergaard equations for certain plane crack problems,” Int. J. Fract. Mech., 8, No. 4, 383–392 (1972). J. Eftis and H. Liebowitz, “On the modified Westergaard equations for certain plane crack problems,” Int. J. Fract. Mech., 8, No. 4, 383–392 (1972).
69.
Zurück zum Zitat J. Schijve, “Some considerations on the Eftis–Liebowitz equation for the COD compliance of a center cracked sheet specimen,” Eng. Fract. Mech., 55, No. 3, 341–346 (1996).CrossRef J. Schijve, “Some considerations on the Eftis–Liebowitz equation for the COD compliance of a center cracked sheet specimen,” Eng. Fract. Mech., 55, No. 3, 341–346 (1996).CrossRef
70.
Zurück zum Zitat K.-H. Schwalbe, “Introduction of δ5 as an operational definition of the CTOD and its practical use,” in: ASTM STP 1256, Fract. Mech., 26, 763–778 (1995). K.-H. Schwalbe, “Introduction of δ5 as an operational definition of the CTOD and its practical use,” in: ASTM STP 1256, Fract. Mech., 26, 763–778 (1995).
71.
Zurück zum Zitat C. E. Turner, “A re-assessment of ductile tearing resistance (Pts. I and II),” in: Fracture Behaviour and Design of Materials and Structures (Proc. ECF 8), Vol. 2 (1990), pp. 933–968. C. E. Turner, “A re-assessment of ductile tearing resistance (Pts. I and II),” in: Fracture Behaviour and Design of Materials and Structures (Proc. ECF 8), Vol. 2 (1990), pp. 933–968.
72.
Zurück zum Zitat C. E. Turner and L. Braga, “Energy dissipation rate and COA analyses of fully plastic ductile tearing,” in: ASTM STP 1171 (1993), pp. 158–175. C. E. Turner and L. Braga, “Energy dissipation rate and COA analyses of fully plastic ductile tearing,” in: ASTM STP 1171 (1993), pp. 158–175.
73.
Zurück zum Zitat C. E. Turner and O. Kolednik, “A micro and macro approach to the energy dissipation rate model of stable ductile crack growth,” Fatigue Fract. Eng. Mater. Struct., 17, 1089–1107 (1994).CrossRef C. E. Turner and O. Kolednik, “A micro and macro approach to the energy dissipation rate model of stable ductile crack growth,” Fatigue Fract. Eng. Mater. Struct., 17, 1089–1107 (1994).CrossRef
74.
Zurück zum Zitat W. Brocks and T. Siegmund, “Effect of geometry and material on the energy dissipation rate,” in: Fracture Mechanics: Application and Challenges (Proc. ECF 13, Sept. 6–9, 2000), San Sebastian (2000). W. Brocks and T. Siegmund, “Effect of geometry and material on the energy dissipation rate,” in: Fracture Mechanics: Application and Challenges (Proc. ECF 13, Sept. 6–9, 2000), San Sebastian (2000).
75.
Zurück zum Zitat T. Siegmund and W. Brocks, “Modelling crack growth in thin-sheet aluminium alloys,” in: ASTM STP 1389, Fatigue Fract. Mech., 31, 475–485 (2000).CrossRef T. Siegmund and W. Brocks, “Modelling crack growth in thin-sheet aluminium alloys,” in: ASTM STP 1389, Fatigue Fract. Mech., 31, 475–485 (2000).CrossRef
76.
Zurück zum Zitat V. P. Naumenko and I. V. Limansky, “Energy-based assessment of ductile tearing in a thin sheet aluminium alloy,” Proc. Eng., 1, Issue 1, 63–66 (2009).CrossRef V. P. Naumenko and I. V. Limansky, “Energy-based assessment of ductile tearing in a thin sheet aluminium alloy,” Proc. Eng., 1, Issue 1, 63–66 (2009).CrossRef
77.
Zurück zum Zitat V. P. Naumenko, “Through-life assessment of ductile tearing under low-constraint conditions,” in: Proc. 12th Int. Conf. on Fracture, Ottawa (2009). V. P. Naumenko, “Through-life assessment of ductile tearing under low-constraint conditions,” in: Proc. 12th Int. Conf. on Fracture, Ottawa (2009).
78.
Zurück zum Zitat B. Cotterell and J. K. Reddel, “The essential work of plane stress ductile fracture,” Int. J. Fract., 13, 267–277 (1977). B. Cotterell and J. K. Reddel, “The essential work of plane stress ductile fracture,” Int. J. Fract., 13, 267–277 (1977).
79.
Zurück zum Zitat J. G. Williams and M. Rink, “The standardization of the EWF test,” Eng. Fract. Mech., 74, 1009–1017 (2007).CrossRef J. G. Williams and M. Rink, “The standardization of the EWF test,” Eng. Fract. Mech., 74, 1009–1017 (2007).CrossRef
80.
Zurück zum Zitat A. Ya. Krasovskii, V. M. Torop, and I. V. Orynyak, Two-Criterion Diagram for the Evaluation of the Limiting State of a Cracked Body [in Russian], Preprint, Institute of Problems of Strength, Academy of Sciences of UkrSSR, Kiev (1989). A. Ya. Krasovskii, V. M. Torop, and I. V. Orynyak, Two-Criterion Diagram for the Evaluation of the Limiting State of a Cracked Body [in Russian], Preprint, Institute of Problems of Strength, Academy of Sciences of UkrSSR, Kiev (1989).
81.
Zurück zum Zitat I. Milne, R. A. Ainsworth, A. R. Dowling, and A. T. Stewart, Assessment of the Integrity of Structures Containing Defects, CEGB Report R/H/R6 Revision 3, CEGB, Berkeley, UK (1986). I. Milne, R. A. Ainsworth, A. R. Dowling, and A. T. Stewart, Assessment of the Integrity of Structures Containing Defects, CEGB Report R/H/R6 Revision 3, CEGB, Berkeley, UK (1986).
82.
Zurück zum Zitat DSTU-N B V.2.3-21:2008. Main Pipelines. Guidance. Determination of the Remaining Strength of Main Pipelines Containing Defects [in Ukrainian], Valid since January 1, 2009. DSTU-N B V.2.3-21:2008. Main Pipelines. Guidance. Determination of the Remaining Strength of Main Pipelines Containing Defects [in Ukrainian], Valid since January 1, 2009.
83.
Zurück zum Zitat A. Ya. Krasovskii, “Constitutive equations and fracture models,” in: Handbook on Material Resistance to Deformation and Fracture [in Russian], Part 2, Naukova Dumka, Kiev (1994), pp. 328–384. A. Ya. Krasovskii, “Constitutive equations and fracture models,” in: Handbook on Material Resistance to Deformation and Fracture [in Russian], Part 2, Naukova Dumka, Kiev (1994), pp. 328–384.
84.
Zurück zum Zitat A. A. Lebedev and N. G. Chausov, New Methods for Assessing the Degradation in the Mechanical Properties of Metal in Structures during the Operating Life [in Russian], Preprint, Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev (2004). A. A. Lebedev and N. G. Chausov, New Methods for Assessing the Degradation in the Mechanical Properties of Metal in Structures during the Operating Life [in Russian], Preprint, Institute of Problems of Strength, National Academy of Sciences of Ukraine, Kiev (2004).
85.
Zurück zum Zitat A. Ya. Krasovskii and V. A. Vainshtock, “A failure criterion of materials taking into consideration the form of the stressed state at the crack apex,” Strength Mater., 10, No. 5, 559–564 (1978).CrossRef A. Ya. Krasovskii and V. A. Vainshtock, “A failure criterion of materials taking into consideration the form of the stressed state at the crack apex,” Strength Mater., 10, No. 5, 559–564 (1978).CrossRef
86.
Zurück zum Zitat I. V. Orynyak, A. Ya. Krasovskii, and M. V. Borodii, “Main features of the national standard DSTU-N B V.2.3-21:2008 ‘Determination of the remaining strength of trunk pipelines containing defects’,” Strength Mater., 41, No. 5, 464–470 (2009).CrossRef I. V. Orynyak, A. Ya. Krasovskii, and M. V. Borodii, “Main features of the national standard DSTU-N B V.2.3-21:2008 ‘Determination of the remaining strength of trunk pipelines containing defects’,” Strength Mater., 41, No. 5, 464–470 (2009).CrossRef
87.
Zurück zum Zitat V. Kumar, M. D. German, and C. F. Shih, An Engineering Approach for Elastic-Plastic Fracture Analysis, EPRI Report NP-1931, EPRI, Palo Alta, CA (1981). V. Kumar, M. D. German, and C. F. Shih, An Engineering Approach for Elastic-Plastic Fracture Analysis, EPRI Report NP-1931, EPRI, Palo Alta, CA (1981).
88.
Zurück zum Zitat R. A. Ainsworth, “The assessment of defects in structures of strain hardening material,” Eng. Fract. Mech., 19, 633–642 (1984).CrossRef R. A. Ainsworth, “The assessment of defects in structures of strain hardening material,” Eng. Fract. Mech., 19, 633–642 (1984).CrossRef
89.
Zurück zum Zitat Y.-J. Kim and D.-J. Shim, “Relevance of plastic limit loads to reference stress approach for surface cracked cylinder problems,” Int. J. Press.Vess. Piping, 82, 687–699 (2005).CrossRef Y.-J. Kim and D.-J. Shim, “Relevance of plastic limit loads to reference stress approach for surface cracked cylinder problems,” Int. J. Press.Vess. Piping, 82, 687–699 (2005).CrossRef
Metadaten
Titel
Fracture Resistance of Sheet Metals and Thin-Wall Structures. Part 1. Critical Review
verfasst von
V. P. Naumenko
I. V. Limanskii
Publikationsdatum
01.01.2014
Verlag
Springer US
Erschienen in
Strength of Materials / Ausgabe 1/2014
Print ISSN: 0039-2316
Elektronische ISSN: 1573-9325
DOI
https://doi.org/10.1007/s11223-014-9512-3

Weitere Artikel der Ausgabe 1/2014

Strength of Materials 1/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.