Skip to main content
Top
Published in: Journal of Computational Electronics 2/2014

01-06-2014

On the threshold voltage of nanoscale bulk nMOSFETs with [110]/(001) uniaxial stress and quantum effects

Authors: Guanyu Wang, Heming Zhang, Wei Wang, Jun Yuan, Zhen Wang

Published in: Journal of Computational Electronics | Issue 2/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Due to the large electron mobility gain cased by uniaxial stress along the [110] directions on (001) silicon substrate, in this paper, the impact of [110]/(001) uniaxial strain and quantum mechanical effects (QMEs) on the threshold voltage of strained-Silicon nMOSFETs is studied by developing a physically-based model. The impact of [110]/(001) stress on the band structure parameters such as density-of-state (DOS) in the conduction and valance band, band-gap and intrinsic carrier concentration is quantized first. Based on a modified threshold surface potential, the threshold voltage model is then proposed by solving the 2-D Poisson’s equation and also by taking short channel effects, quantum effects and other secondary effects into consideration. Our analytical results agree with both TCAD and experimental data. The threshold voltage with the stress along arbitrary orientation can be analyzed analogously. This model can also be used for the design of nanoscale strained-Si nMOSFETs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference De Michielis, M., Esseni, D., Driussi, F.: Analytical models for the insight into the use of alternative channel materials in ballistic nano-MOSFETs. IEEE Trans. Electron Devices 54, 115–123 (2007) CrossRef De Michielis, M., Esseni, D., Driussi, F.: Analytical models for the insight into the use of alternative channel materials in ballistic nano-MOSFETs. IEEE Trans. Electron Devices 54, 115–123 (2007) CrossRef
2.
go back to reference Baykan, M.O., Thompson, S.E., Nishida, T.: Strain effects on three-dimensional, two-dimensional, and one-dimensional silicon logic devices: predicting the future of strained silicon. J. Appl. Phys. 108, 093716 (2010) CrossRef Baykan, M.O., Thompson, S.E., Nishida, T.: Strain effects on three-dimensional, two-dimensional, and one-dimensional silicon logic devices: predicting the future of strained silicon. J. Appl. Phys. 108, 093716 (2010) CrossRef
3.
go back to reference Rim, K., Hoyt, J.L., Gibbons, F.: Fabrication and analysis of deep submicron strained-Si nMOSFET’s. IEEE Trans. Electron Devices 47, 1406–1415 (2000) CrossRef Rim, K., Hoyt, J.L., Gibbons, F.: Fabrication and analysis of deep submicron strained-Si nMOSFET’s. IEEE Trans. Electron Devices 47, 1406–1415 (2000) CrossRef
4.
go back to reference Mizuno, T., Sugiyama, N., Tezuka, T.: Strained-SOI technology for high-speed CMOS operation. In: International Symposium on VLSI Technology, System, and Application, pp. 1–2 (2006) Mizuno, T., Sugiyama, N., Tezuka, T.: Strained-SOI technology for high-speed CMOS operation. In: International Symposium on VLSI Technology, System, and Application, pp. 1–2 (2006)
5.
go back to reference Thompson, S.E., Sun, G.Y., Choi, Y.S., Nishida, T.: Uniaxial-process-induced strained-Si: extending the CMOS roadmap. IEEE Trans. Electron Devices 53, 1010–1020 (2006) CrossRef Thompson, S.E., Sun, G.Y., Choi, Y.S., Nishida, T.: Uniaxial-process-induced strained-Si: extending the CMOS roadmap. IEEE Trans. Electron Devices 53, 1010–1020 (2006) CrossRef
6.
go back to reference Uchida, K., Krishnamohan, T., Saraswat, K.C., Nishi, Y.: Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime. In: IEDM Techn. Dig., pp. 129–132 (2005) Uchida, K., Krishnamohan, T., Saraswat, K.C., Nishi, Y.: Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime. In: IEDM Techn. Dig., pp. 129–132 (2005)
7.
go back to reference Kumar, M.J., Venkataraman, V., Nawal, S.: A simple analytical threshold voltage model of nanoscale single-layer fully depleted strained-silicon-on-insulator MOSFETs. IEEE Trans. Electron Devices 53, 2500–2506 (2006) CrossRef Kumar, M.J., Venkataraman, V., Nawal, S.: A simple analytical threshold voltage model of nanoscale single-layer fully depleted strained-silicon-on-insulator MOSFETs. IEEE Trans. Electron Devices 53, 2500–2506 (2006) CrossRef
8.
go back to reference Zhang, W.M., Fossum, J.G.: On the threshold voltage of strained-Si–Si1−x Ge x MOSFETs. IEEE Trans. Electron Devices 52, 263–268 (2005) CrossRef Zhang, W.M., Fossum, J.G.: On the threshold voltage of strained-Si–Si1−x Ge x MOSFETs. IEEE Trans. Electron Devices 52, 263–268 (2005) CrossRef
9.
go back to reference Lim, J., Thompson, S.E., Fossum, J.G.: Comparison of threshold-voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs. IEEE Electron Device Lett. 25, 731–733 (2006) Lim, J., Thompson, S.E., Fossum, J.G.: Comparison of threshold-voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs. IEEE Electron Device Lett. 25, 731–733 (2006)
10.
go back to reference Esseni, D., Conzatti, F., De Michielis, M., Serra, N., Palestri, P., Selmi, L.: Semi-classical transport modelling of CMOS transistors with arbitrary crystal orientations and strain engineering. J. Comput. Electron. 8, 209–224 (2009) CrossRef Esseni, D., Conzatti, F., De Michielis, M., Serra, N., Palestri, P., Selmi, L.: Semi-classical transport modelling of CMOS transistors with arbitrary crystal orientations and strain engineering. J. Comput. Electron. 8, 209–224 (2009) CrossRef
11.
go back to reference Dijkstra, J.E., Wenckebach, W.T.: Hole transport in strained Si. J. Appl. Phys. 81, 1259–1261 (1997) CrossRef Dijkstra, J.E., Wenckebach, W.T.: Hole transport in strained Si. J. Appl. Phys. 81, 1259–1261 (1997) CrossRef
12.
go back to reference Dhar, S., Ungersbök, E., Kosina, S., Grasser, T., Selberherr, S.: Electron mobility model for 〈110〉 stressed silicon including strain-dependent mass. IEEE Trans. Nanotechnol. 6, 97–100 (2007) CrossRef Dhar, S., Ungersbök, E., Kosina, S., Grasser, T., Selberherr, S.: Electron mobility model for 〈110〉 stressed silicon including strain-dependent mass. IEEE Trans. Nanotechnol. 6, 97–100 (2007) CrossRef
13.
go back to reference Fischetti, M.V., Laux, S.E.: Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234–2252 (1996) CrossRef Fischetti, M.V., Laux, S.E.: Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234–2252 (1996) CrossRef
14.
go back to reference Xu, J.P., Li, Y.P., Lai, P.T., Chen, W.B.: A 2D threshold-voltage model for small MOSFET with quantum-mechanical effects. Microelectron. Reliab. 48, 23–28 (2007) CrossRef Xu, J.P., Li, Y.P., Lai, P.T., Chen, W.B.: A 2D threshold-voltage model for small MOSFET with quantum-mechanical effects. Microelectron. Reliab. 48, 23–28 (2007) CrossRef
15.
go back to reference Jayadeva, G.S., DasGupta, A.: Compact model of short-channel MOSFETs considering quantum mechanical effects. Solid-State Electron. 53, 649–657 (2009) CrossRef Jayadeva, G.S., DasGupta, A.: Compact model of short-channel MOSFETs considering quantum mechanical effects. Solid-State Electron. 53, 649–657 (2009) CrossRef
16.
go back to reference Yau, L.D.: A simple theory to predict the threshold voltage of short-channel IGFETs. Solid-State Electron. 17, 1059–1063 (1974) CrossRef Yau, L.D.: A simple theory to predict the threshold voltage of short-channel IGFETs. Solid-State Electron. 17, 1059–1063 (1974) CrossRef
17.
go back to reference Suzuki, K.: Short channel MOSFET model using a universal channel depletion width parameter. IEEE Trans. Electron Devices 47, 1202–1208 (2000) CrossRef Suzuki, K.: Short channel MOSFET model using a universal channel depletion width parameter. IEEE Trans. Electron Devices 47, 1202–1208 (2000) CrossRef
18.
go back to reference Ohkura, Y.: Quantum effects in Si n-MOS inversion layer at high substrate concentration. Solid-State Electron. 33, 1581 (1990) CrossRef Ohkura, Y.: Quantum effects in Si n-MOS inversion layer at high substrate concentration. Solid-State Electron. 33, 1581 (1990) CrossRef
19.
go back to reference Liu, Z.H., Hu, C.M., Huang, J.H.: An analytical threshold voltage model of NMOS with hot-carrier induced interface charge effect. IEEE Trans. Electron Devices 40, 86–95 (2005) CrossRef Liu, Z.H., Hu, C.M., Huang, J.H.: An analytical threshold voltage model of NMOS with hot-carrier induced interface charge effect. IEEE Trans. Electron Devices 40, 86–95 (2005) CrossRef
20.
go back to reference Liu, X.Y., Kang, J.F., Sun, L.: Threshold voltage model for MOSFETs with high-k gate dielectrics. IEEE Electron Device Lett. 23, 270–272 (2002) CrossRef Liu, X.Y., Kang, J.F., Sun, L.: Threshold voltage model for MOSFETs with high-k gate dielectrics. IEEE Electron Device Lett. 23, 270–272 (2002) CrossRef
21.
go back to reference Zou, X., Xu, J.P., Li, C.X., Lai, P.T.: A threshold-voltage model of SiGe-channel pMOSFET without Si cap layer. Microelectron. Reliab. 47, 391–394 (2007) CrossRef Zou, X., Xu, J.P., Li, C.X., Lai, P.T.: A threshold-voltage model of SiGe-channel pMOSFET without Si cap layer. Microelectron. Reliab. 47, 391–394 (2007) CrossRef
22.
go back to reference Mukhopadhyay, B., Biswas, A., Basu, P.K., Eneman, G.: Modelling of threshold voltage and subthreshold slope of strained-Si MOSFETs including quantum effects. Semicond. Sci. Technol. 23, 095017 (2008) CrossRef Mukhopadhyay, B., Biswas, A., Basu, P.K., Eneman, G.: Modelling of threshold voltage and subthreshold slope of strained-Si MOSFETs including quantum effects. Semicond. Sci. Technol. 23, 095017 (2008) CrossRef
23.
go back to reference Synopsys TCAD tools. Sentaurus process user’s manuals (2006) Synopsys TCAD tools. Sentaurus process user’s manuals (2006)
24.
go back to reference Yu, B., Wann, H.J., Nowak, E.D., Noda, K., Hu, C.: Short-channel effect improved by lateral channel-engineering in deep-submicronmeter MOSFET’s. IEEE Trans. Electron Devices 44, 627–633 (1997) CrossRef Yu, B., Wann, H.J., Nowak, E.D., Noda, K., Hu, C.: Short-channel effect improved by lateral channel-engineering in deep-submicronmeter MOSFET’s. IEEE Trans. Electron Devices 44, 627–633 (1997) CrossRef
Metadata
Title
On the threshold voltage of nanoscale bulk nMOSFETs with [110]/(001) uniaxial stress and quantum effects
Authors
Guanyu Wang
Heming Zhang
Wei Wang
Jun Yuan
Zhen Wang
Publication date
01-06-2014
Publisher
Springer US
Published in
Journal of Computational Electronics / Issue 2/2014
Print ISSN: 1569-8025
Electronic ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-013-0553-9

Other articles of this Issue 2/2014

Journal of Computational Electronics 2/2014 Go to the issue