Skip to main content
Erschienen in: Journal of Computational Electronics 2/2014

01.06.2014

On the threshold voltage of nanoscale bulk nMOSFETs with [110]/(001) uniaxial stress and quantum effects

verfasst von: Guanyu Wang, Heming Zhang, Wei Wang, Jun Yuan, Zhen Wang

Erschienen in: Journal of Computational Electronics | Ausgabe 2/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the large electron mobility gain cased by uniaxial stress along the [110] directions on (001) silicon substrate, in this paper, the impact of [110]/(001) uniaxial strain and quantum mechanical effects (QMEs) on the threshold voltage of strained-Silicon nMOSFETs is studied by developing a physically-based model. The impact of [110]/(001) stress on the band structure parameters such as density-of-state (DOS) in the conduction and valance band, band-gap and intrinsic carrier concentration is quantized first. Based on a modified threshold surface potential, the threshold voltage model is then proposed by solving the 2-D Poisson’s equation and also by taking short channel effects, quantum effects and other secondary effects into consideration. Our analytical results agree with both TCAD and experimental data. The threshold voltage with the stress along arbitrary orientation can be analyzed analogously. This model can also be used for the design of nanoscale strained-Si nMOSFETs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat De Michielis, M., Esseni, D., Driussi, F.: Analytical models for the insight into the use of alternative channel materials in ballistic nano-MOSFETs. IEEE Trans. Electron Devices 54, 115–123 (2007) CrossRef De Michielis, M., Esseni, D., Driussi, F.: Analytical models for the insight into the use of alternative channel materials in ballistic nano-MOSFETs. IEEE Trans. Electron Devices 54, 115–123 (2007) CrossRef
2.
Zurück zum Zitat Baykan, M.O., Thompson, S.E., Nishida, T.: Strain effects on three-dimensional, two-dimensional, and one-dimensional silicon logic devices: predicting the future of strained silicon. J. Appl. Phys. 108, 093716 (2010) CrossRef Baykan, M.O., Thompson, S.E., Nishida, T.: Strain effects on three-dimensional, two-dimensional, and one-dimensional silicon logic devices: predicting the future of strained silicon. J. Appl. Phys. 108, 093716 (2010) CrossRef
3.
Zurück zum Zitat Rim, K., Hoyt, J.L., Gibbons, F.: Fabrication and analysis of deep submicron strained-Si nMOSFET’s. IEEE Trans. Electron Devices 47, 1406–1415 (2000) CrossRef Rim, K., Hoyt, J.L., Gibbons, F.: Fabrication and analysis of deep submicron strained-Si nMOSFET’s. IEEE Trans. Electron Devices 47, 1406–1415 (2000) CrossRef
4.
Zurück zum Zitat Mizuno, T., Sugiyama, N., Tezuka, T.: Strained-SOI technology for high-speed CMOS operation. In: International Symposium on VLSI Technology, System, and Application, pp. 1–2 (2006) Mizuno, T., Sugiyama, N., Tezuka, T.: Strained-SOI technology for high-speed CMOS operation. In: International Symposium on VLSI Technology, System, and Application, pp. 1–2 (2006)
5.
Zurück zum Zitat Thompson, S.E., Sun, G.Y., Choi, Y.S., Nishida, T.: Uniaxial-process-induced strained-Si: extending the CMOS roadmap. IEEE Trans. Electron Devices 53, 1010–1020 (2006) CrossRef Thompson, S.E., Sun, G.Y., Choi, Y.S., Nishida, T.: Uniaxial-process-induced strained-Si: extending the CMOS roadmap. IEEE Trans. Electron Devices 53, 1010–1020 (2006) CrossRef
6.
Zurück zum Zitat Uchida, K., Krishnamohan, T., Saraswat, K.C., Nishi, Y.: Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime. In: IEDM Techn. Dig., pp. 129–132 (2005) Uchida, K., Krishnamohan, T., Saraswat, K.C., Nishi, Y.: Physical mechanisms of electron mobility enhancement in uniaxial stressed MOSFETs and impact of uniaxial stress engineering in ballistic regime. In: IEDM Techn. Dig., pp. 129–132 (2005)
7.
Zurück zum Zitat Kumar, M.J., Venkataraman, V., Nawal, S.: A simple analytical threshold voltage model of nanoscale single-layer fully depleted strained-silicon-on-insulator MOSFETs. IEEE Trans. Electron Devices 53, 2500–2506 (2006) CrossRef Kumar, M.J., Venkataraman, V., Nawal, S.: A simple analytical threshold voltage model of nanoscale single-layer fully depleted strained-silicon-on-insulator MOSFETs. IEEE Trans. Electron Devices 53, 2500–2506 (2006) CrossRef
8.
Zurück zum Zitat Zhang, W.M., Fossum, J.G.: On the threshold voltage of strained-Si–Si1−x Ge x MOSFETs. IEEE Trans. Electron Devices 52, 263–268 (2005) CrossRef Zhang, W.M., Fossum, J.G.: On the threshold voltage of strained-Si–Si1−x Ge x MOSFETs. IEEE Trans. Electron Devices 52, 263–268 (2005) CrossRef
9.
Zurück zum Zitat Lim, J., Thompson, S.E., Fossum, J.G.: Comparison of threshold-voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs. IEEE Electron Device Lett. 25, 731–733 (2006) Lim, J., Thompson, S.E., Fossum, J.G.: Comparison of threshold-voltage shifts for uniaxial and biaxial tensile-stressed n-MOSFETs. IEEE Electron Device Lett. 25, 731–733 (2006)
10.
Zurück zum Zitat Esseni, D., Conzatti, F., De Michielis, M., Serra, N., Palestri, P., Selmi, L.: Semi-classical transport modelling of CMOS transistors with arbitrary crystal orientations and strain engineering. J. Comput. Electron. 8, 209–224 (2009) CrossRef Esseni, D., Conzatti, F., De Michielis, M., Serra, N., Palestri, P., Selmi, L.: Semi-classical transport modelling of CMOS transistors with arbitrary crystal orientations and strain engineering. J. Comput. Electron. 8, 209–224 (2009) CrossRef
11.
Zurück zum Zitat Dijkstra, J.E., Wenckebach, W.T.: Hole transport in strained Si. J. Appl. Phys. 81, 1259–1261 (1997) CrossRef Dijkstra, J.E., Wenckebach, W.T.: Hole transport in strained Si. J. Appl. Phys. 81, 1259–1261 (1997) CrossRef
12.
Zurück zum Zitat Dhar, S., Ungersbök, E., Kosina, S., Grasser, T., Selberherr, S.: Electron mobility model for 〈110〉 stressed silicon including strain-dependent mass. IEEE Trans. Nanotechnol. 6, 97–100 (2007) CrossRef Dhar, S., Ungersbök, E., Kosina, S., Grasser, T., Selberherr, S.: Electron mobility model for 〈110〉 stressed silicon including strain-dependent mass. IEEE Trans. Nanotechnol. 6, 97–100 (2007) CrossRef
13.
Zurück zum Zitat Fischetti, M.V., Laux, S.E.: Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234–2252 (1996) CrossRef Fischetti, M.V., Laux, S.E.: Band structure, deformation potentials, and carrier mobility in strained Si, Ge, and SiGe alloys. J. Appl. Phys. 80, 2234–2252 (1996) CrossRef
14.
Zurück zum Zitat Xu, J.P., Li, Y.P., Lai, P.T., Chen, W.B.: A 2D threshold-voltage model for small MOSFET with quantum-mechanical effects. Microelectron. Reliab. 48, 23–28 (2007) CrossRef Xu, J.P., Li, Y.P., Lai, P.T., Chen, W.B.: A 2D threshold-voltage model for small MOSFET with quantum-mechanical effects. Microelectron. Reliab. 48, 23–28 (2007) CrossRef
15.
Zurück zum Zitat Jayadeva, G.S., DasGupta, A.: Compact model of short-channel MOSFETs considering quantum mechanical effects. Solid-State Electron. 53, 649–657 (2009) CrossRef Jayadeva, G.S., DasGupta, A.: Compact model of short-channel MOSFETs considering quantum mechanical effects. Solid-State Electron. 53, 649–657 (2009) CrossRef
16.
Zurück zum Zitat Yau, L.D.: A simple theory to predict the threshold voltage of short-channel IGFETs. Solid-State Electron. 17, 1059–1063 (1974) CrossRef Yau, L.D.: A simple theory to predict the threshold voltage of short-channel IGFETs. Solid-State Electron. 17, 1059–1063 (1974) CrossRef
17.
Zurück zum Zitat Suzuki, K.: Short channel MOSFET model using a universal channel depletion width parameter. IEEE Trans. Electron Devices 47, 1202–1208 (2000) CrossRef Suzuki, K.: Short channel MOSFET model using a universal channel depletion width parameter. IEEE Trans. Electron Devices 47, 1202–1208 (2000) CrossRef
18.
Zurück zum Zitat Ohkura, Y.: Quantum effects in Si n-MOS inversion layer at high substrate concentration. Solid-State Electron. 33, 1581 (1990) CrossRef Ohkura, Y.: Quantum effects in Si n-MOS inversion layer at high substrate concentration. Solid-State Electron. 33, 1581 (1990) CrossRef
19.
Zurück zum Zitat Liu, Z.H., Hu, C.M., Huang, J.H.: An analytical threshold voltage model of NMOS with hot-carrier induced interface charge effect. IEEE Trans. Electron Devices 40, 86–95 (2005) CrossRef Liu, Z.H., Hu, C.M., Huang, J.H.: An analytical threshold voltage model of NMOS with hot-carrier induced interface charge effect. IEEE Trans. Electron Devices 40, 86–95 (2005) CrossRef
20.
Zurück zum Zitat Liu, X.Y., Kang, J.F., Sun, L.: Threshold voltage model for MOSFETs with high-k gate dielectrics. IEEE Electron Device Lett. 23, 270–272 (2002) CrossRef Liu, X.Y., Kang, J.F., Sun, L.: Threshold voltage model for MOSFETs with high-k gate dielectrics. IEEE Electron Device Lett. 23, 270–272 (2002) CrossRef
21.
Zurück zum Zitat Zou, X., Xu, J.P., Li, C.X., Lai, P.T.: A threshold-voltage model of SiGe-channel pMOSFET without Si cap layer. Microelectron. Reliab. 47, 391–394 (2007) CrossRef Zou, X., Xu, J.P., Li, C.X., Lai, P.T.: A threshold-voltage model of SiGe-channel pMOSFET without Si cap layer. Microelectron. Reliab. 47, 391–394 (2007) CrossRef
22.
Zurück zum Zitat Mukhopadhyay, B., Biswas, A., Basu, P.K., Eneman, G.: Modelling of threshold voltage and subthreshold slope of strained-Si MOSFETs including quantum effects. Semicond. Sci. Technol. 23, 095017 (2008) CrossRef Mukhopadhyay, B., Biswas, A., Basu, P.K., Eneman, G.: Modelling of threshold voltage and subthreshold slope of strained-Si MOSFETs including quantum effects. Semicond. Sci. Technol. 23, 095017 (2008) CrossRef
23.
Zurück zum Zitat Synopsys TCAD tools. Sentaurus process user’s manuals (2006) Synopsys TCAD tools. Sentaurus process user’s manuals (2006)
24.
Zurück zum Zitat Yu, B., Wann, H.J., Nowak, E.D., Noda, K., Hu, C.: Short-channel effect improved by lateral channel-engineering in deep-submicronmeter MOSFET’s. IEEE Trans. Electron Devices 44, 627–633 (1997) CrossRef Yu, B., Wann, H.J., Nowak, E.D., Noda, K., Hu, C.: Short-channel effect improved by lateral channel-engineering in deep-submicronmeter MOSFET’s. IEEE Trans. Electron Devices 44, 627–633 (1997) CrossRef
Metadaten
Titel
On the threshold voltage of nanoscale bulk nMOSFETs with [110]/(001) uniaxial stress and quantum effects
verfasst von
Guanyu Wang
Heming Zhang
Wei Wang
Jun Yuan
Zhen Wang
Publikationsdatum
01.06.2014
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 2/2014
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-013-0553-9

Weitere Artikel der Ausgabe 2/2014

Journal of Computational Electronics 2/2014 Zur Ausgabe

Neuer Inhalt