Skip to main content
Top
Published in: Journal of Elasticity 2/2018

23-05-2018

On the Use of the Continuum Mechanics Method for Describing Interactions in Discrete Systems with Rotational Degrees of Freedom

Author: Elena A. Ivanova

Published in: Journal of Elasticity | Issue 2/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Elastic interactions in a system of two body-points possessing both translational and rotational degrees of freedom are studied for the most general case of motion in 3D space. The continuum mechanics method is used as a theoretical foundation for describing the interactions. A definition of strain measures for the discrete system is given by analogy with that in continuum mechanics. Constitutive equations for force and moment vectors are derived based on the energy balance equation. Several new interaction potentials are suggested.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Tersoff, J.: New empirical model for the structural properties of sellicon. Phys. Rev. Lett. 56(6), 632–635 (1986) ADSCrossRef Tersoff, J.: New empirical model for the structural properties of sellicon. Phys. Rev. Lett. 56(6), 632–635 (1986) ADSCrossRef
2.
go back to reference Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(12), 6991–7000 (1988) ADSCrossRef Tersoff, J.: New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37(12), 6991–7000 (1988) ADSCrossRef
3.
go back to reference Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42(15), 9458–9471 (1990) ADSCrossRef Brenner, D.W.: Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 42(15), 9458–9471 (1990) ADSCrossRef
4.
go back to reference Zhao, H., Alurua, N.R.: Temperature and strain-rate dependent fracture strength of graphene. J. Appl. Phys. 108, 064321 (2010) ADSCrossRef Zhao, H., Alurua, N.R.: Temperature and strain-rate dependent fracture strength of graphene. J. Appl. Phys. 108, 064321 (2010) ADSCrossRef
5.
go back to reference Savin, A.V., Kivshar, Y.S., Hu, B.: Suppression of thermal conductivity in graphene nanoribbons with rough edges. Phys. Rev. B 82, 195422 (2010) ADSCrossRef Savin, A.V., Kivshar, Y.S., Hu, B.: Suppression of thermal conductivity in graphene nanoribbons with rough edges. Phys. Rev. B 82, 195422 (2010) ADSCrossRef
6.
go back to reference Gupta, S.S., Barta, R.C.: Elastic properties and frequencies of free vibrations of single-layer graphene sheets. J. Comput. Theor. Nanosci. 7, 1–14 (2010) CrossRef Gupta, S.S., Barta, R.C.: Elastic properties and frequencies of free vibrations of single-layer graphene sheets. J. Comput. Theor. Nanosci. 7, 1–14 (2010) CrossRef
7.
go back to reference Mindlin, R.D.: Elasticity, piezoelectricity and crystal lattice dynamics. J. Elast. 2(4), 217–282 (1972) CrossRef Mindlin, R.D.: Elasticity, piezoelectricity and crystal lattice dynamics. J. Elast. 2(4), 217–282 (1972) CrossRef
8.
go back to reference Askar, A.: Molecular crystals and the polar theories of the continua. Experimental values of material coefficients for KNO3. Int. J. Eng. Sci. 10, 293–300 (1972) CrossRef Askar, A.: Molecular crystals and the polar theories of the continua. Experimental values of material coefficients for KNO3. Int. J. Eng. Sci. 10, 293–300 (1972) CrossRef
9.
go back to reference Pouget, J., Maugin, G.A.: Nonlinear dynamics of oriented elastic solids. I. Basic equations. J. Elast. 22(2–3), 135–155 (1989) MathSciNetCrossRef Pouget, J., Maugin, G.A.: Nonlinear dynamics of oriented elastic solids. I. Basic equations. J. Elast. 22(2–3), 135–155 (1989) MathSciNetCrossRef
10.
go back to reference Pouget, J., Maugin, G.A.: Nonlinear dynamics of oriented elastic solids. II. Propagation of solitons. J. Elast. 22(2–3), 157–183 (1989) MathSciNetCrossRef Pouget, J., Maugin, G.A.: Nonlinear dynamics of oriented elastic solids. II. Propagation of solitons. J. Elast. 22(2–3), 157–183 (1989) MathSciNetCrossRef
11.
go back to reference Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987) MATH Allen, M.P., Tildesley, D.J.: Computer Simulation of Liquids. Clarendon Press, Oxford (1987) MATH
12.
go back to reference Moreno-Razo, J.A., Sambriski, E.J., Koenig, G.M., Díaz-Herrera, E., Abbotta, N.L., de Pablo, J.J.: Effects of anchoring strength on the diffusivity of nanoparticles in model liquid-crystalline fluids. Soft Matter 7, 6828–6835 (2011) ADSCrossRef Moreno-Razo, J.A., Sambriski, E.J., Koenig, G.M., Díaz-Herrera, E., Abbotta, N.L., de Pablo, J.J.: Effects of anchoring strength on the diffusivity of nanoparticles in model liquid-crystalline fluids. Soft Matter 7, 6828–6835 (2011) ADSCrossRef
13.
go back to reference Price, S.L., Stone, A.J., Alderton, M.: Explicit formulae for the electrostatic energy, forces and torques between a pair of molecules of arbitrary symmetry. Mol. Phys. 52(4), 987–1001 (1984) ADSCrossRef Price, S.L., Stone, A.J., Alderton, M.: Explicit formulae for the electrostatic energy, forces and torques between a pair of molecules of arbitrary symmetry. Mol. Phys. 52(4), 987–1001 (1984) ADSCrossRef
14.
go back to reference Allen, M.P., Germano, G.: Expressions for forces and torques in molecular simulations using rigid bodies. Mol. Phys. 104(20), 3225–3235 (2006) ADSCrossRef Allen, M.P., Germano, G.: Expressions for forces and torques in molecular simulations using rigid bodies. Mol. Phys. 104(20), 3225–3235 (2006) ADSCrossRef
15.
go back to reference Coleman, B.D., Olson, W.K., Swigon, D.: Theory of sequence-dependent DNA elasticity. J. Chem. Phys. 118(15), 7127–7140 (2003) ADSCrossRef Coleman, B.D., Olson, W.K., Swigon, D.: Theory of sequence-dependent DNA elasticity. J. Chem. Phys. 118(15), 7127–7140 (2003) ADSCrossRef
16.
17.
go back to reference Ivanova, E.A., Krivtsov, A.M., Morozov, N.F., Firsova, A.D.: Description of crystal particle packing considering moment interactions. Mech. Solids 38(4), 101–117 (2003) Ivanova, E.A., Krivtsov, A.M., Morozov, N.F., Firsova, A.D.: Description of crystal particle packing considering moment interactions. Mech. Solids 38(4), 101–117 (2003)
18.
go back to reference Ivanova, E.A., Kirvtsov, A.M., Morozov, N.F.: Macroscopic relations of elasticity for complex crystal latices using moment interaction at microscale. Appl. Math. Mech. 71(4), 543–561 (2007) MathSciNetCrossRef Ivanova, E.A., Kirvtsov, A.M., Morozov, N.F.: Macroscopic relations of elasticity for complex crystal latices using moment interaction at microscale. Appl. Math. Mech. 71(4), 543–561 (2007) MathSciNetCrossRef
19.
go back to reference Kuzkin, V.A., Krivtsov, A.M.: Description for mechanical properties of graphene using particles with rotational degrees of freedom. Dokl. Phys. 56(10), 527–530 (2011) ADSCrossRef Kuzkin, V.A., Krivtsov, A.M.: Description for mechanical properties of graphene using particles with rotational degrees of freedom. Dokl. Phys. 56(10), 527–530 (2011) ADSCrossRef
20.
go back to reference Kuzkin, V.A., Asonov, I.E.: Vector-based model of elastic bonds for simulation of granular solids. Phys. Rev. E 86, 051301 (2012) ADSCrossRef Kuzkin, V.A., Asonov, I.E.: Vector-based model of elastic bonds for simulation of granular solids. Phys. Rev. E 86, 051301 (2012) ADSCrossRef
21.
go back to reference Kuzkin, V.A., Krivtsov, A.M.: Enhanced vector-based model for elastic bonds in solids. Lett. Mater. 7(4), 455–458 (2017) CrossRef Kuzkin, V.A., Krivtsov, A.M.: Enhanced vector-based model for elastic bonds in solids. Lett. Mater. 7(4), 455–458 (2017) CrossRef
22.
go back to reference Bagi, K.: Microstructural stress tensor of granular assemblies with volume forces. J. Appl. Mech. 66(4), 934–936 (1999) ADSCrossRef Bagi, K.: Microstructural stress tensor of granular assemblies with volume forces. J. Appl. Mech. 66(4), 934–936 (1999) ADSCrossRef
23.
go back to reference Kruyt, N.P.: Statics and kinematics of discrete Cosserat-type granular materials. Int. J. Solids Struct. 40(3), 511–534 (2003) CrossRef Kruyt, N.P.: Statics and kinematics of discrete Cosserat-type granular materials. Int. J. Solids Struct. 40(3), 511–534 (2003) CrossRef
24.
go back to reference Murdoch, A.I.: On the microscopic interpretation of stress and couple stress. J. Elast. 71(1–3), 105–131 (2003) MathSciNetCrossRef Murdoch, A.I.: On the microscopic interpretation of stress and couple stress. J. Elast. 71(1–3), 105–131 (2003) MathSciNetCrossRef
25.
go back to reference Bagi, K.: Analysis of microstructural strain tensors for granular assemblies. Int. J. Solids Struct. 43(10), 3166–3184 (2006) CrossRef Bagi, K.: Analysis of microstructural strain tensors for granular assemblies. Int. J. Solids Struct. 43(10), 3166–3184 (2006) CrossRef
27.
go back to reference Cundall, P.A.: A computer model for simulating progressive large scale movements in blocky rock systems. In: Proceedings Symposium Int. Soc. Rock Mech., Nancy Metz, vol. 1. (1971). S. Paper II-8 Cundall, P.A.: A computer model for simulating progressive large scale movements in blocky rock systems. In: Proceedings Symposium Int. Soc. Rock Mech., Nancy Metz, vol. 1. (1971). S. Paper II-8
28.
go back to reference Cundall, P.A., Strack, O.D.L.: A distinct element model for granular assemblies. Geotechnique 29, 47–65 (1979) CrossRef Cundall, P.A., Strack, O.D.L.: A distinct element model for granular assemblies. Geotechnique 29, 47–65 (1979) CrossRef
29.
go back to reference Deng, Sh., Li, H., Ma, G., Huang, H., Li, X.: Simulation of shale-proppant interaction in hydraulic fracturing by the discrete element method. Int. J. Rock Mech. Min. Sci. 70, 219–228 (2014) CrossRef Deng, Sh., Li, H., Ma, G., Huang, H., Li, X.: Simulation of shale-proppant interaction in hydraulic fracturing by the discrete element method. Int. J. Rock Mech. Min. Sci. 70, 219–228 (2014) CrossRef
30.
go back to reference Kuzkin, V.A., Krivtsov, A.M., Linkov, A.M.: Computer simulation of effective viscosity of fluid-proppant mixture used in hydraulic fracturing. J. Min. Sci. 50(1), 1–9 (2014) CrossRef Kuzkin, V.A., Krivtsov, A.M., Linkov, A.M.: Computer simulation of effective viscosity of fluid-proppant mixture used in hydraulic fracturing. J. Min. Sci. 50(1), 1–9 (2014) CrossRef
31.
go back to reference Kuzkin, V.A., Krivtsov, A.M., Linkov, A.M.: Comparative study of rheological properties of suspension by computer simulation of Poiseuille and Couette flows. J. Min. Sci. 50(6), 1017–1025 (2014) CrossRef Kuzkin, V.A., Krivtsov, A.M., Linkov, A.M.: Comparative study of rheological properties of suspension by computer simulation of Poiseuille and Couette flows. J. Min. Sci. 50(6), 1017–1025 (2014) CrossRef
32.
go back to reference Basu, D., Das, K., Smart, K., Ofoegbu, G.: Comparison of Eulerian-granular and discrete element models for simulation of proppant flows in fractured reservoirs. In: Fluids Engineering Systems and Technologies. ASME International Mechanical Engineering Congress and Exposition, vol. 7B, p. V07BT09A012 (2015). https://doi.org/10.1115/IMECE2015-50050. ASME CrossRef Basu, D., Das, K., Smart, K., Ofoegbu, G.: Comparison of Eulerian-granular and discrete element models for simulation of proppant flows in fractured reservoirs. In: Fluids Engineering Systems and Technologies. ASME International Mechanical Engineering Congress and Exposition, vol. 7B, p. V07BT09A012 (2015). https://​doi.​org/​10.​1115/​IMECE2015-50050. ASME CrossRef
33.
go back to reference Bancewicz, M., Poła, J., Koza, Z.: Simulations of proppant transport in microfractures. In: 19th EGU General Assembly, EGU2017, Proceedings from the Conference, 23–28 April 2017, Vienna, Austria, p. 16538 (2017) Bancewicz, M., Poła, J., Koza, Z.: Simulations of proppant transport in microfractures. In: 19th EGU General Assembly, EGU2017, Proceedings from the Conference, 23–28 April 2017, Vienna, Austria, p. 16538 (2017)
34.
go back to reference Zhang, G., Gutierrez, M., Li, M.: A coupled CFD-DEM approach to model particle- fluid mixture transport between two parallel plates to improve understanding of proppant micromechanics in hydraulic fractures. Powder Technol. 308, 235–248 (2017) CrossRef Zhang, G., Gutierrez, M., Li, M.: A coupled CFD-DEM approach to model particle- fluid mixture transport between two parallel plates to improve understanding of proppant micromechanics in hydraulic fractures. Powder Technol. 308, 235–248 (2017) CrossRef
36.
go back to reference Altenbach, H., Naumenko, K., Zhilin, P.A.: A micro-polar theory for binary media with application to phase-transitional ow of fiber suspensions. Contin. Mech. Thermodyn. 15(6), 539–570 (2003) ADSMathSciNetCrossRef Altenbach, H., Naumenko, K., Zhilin, P.A.: A micro-polar theory for binary media with application to phase-transitional ow of fiber suspensions. Contin. Mech. Thermodyn. 15(6), 539–570 (2003) ADSMathSciNetCrossRef
37.
go back to reference Zhilin, P.A.: Advanced Problems in Mechanics, vol. 2. Institute for Problems in Mechanical Engineering, St. Petersburg (2006) Zhilin, P.A.: Advanced Problems in Mechanics, vol. 2. Institute for Problems in Mechanical Engineering, St. Petersburg (2006)
38.
go back to reference Zhilin, P.A.: Rational Continuum Mechanics. Polytechnic University Publishing House, St. Petersburg (2012). (In Russian) Zhilin, P.A.: Rational Continuum Mechanics. Polytechnic University Publishing House, St. Petersburg (2012). (In Russian)
39.
go back to reference Van Zon, R., Schofield, J.: Event-driven dynamics of rigid bodies interacting via discretized potentials. J. Chem. Phys. 128, 154119 (2008) ADSCrossRef Van Zon, R., Schofield, J.: Event-driven dynamics of rigid bodies interacting via discretized potentials. J. Chem. Phys. 128, 154119 (2008) ADSCrossRef
40.
go back to reference Ivanova, E.A., Krivtsov, A.M., Morozov, N.F., Firsova, A.D.: Inclusion of the moment interaction in the calculation of the flexural rigidity of nanostructures. Dokl. Phys. 48(8), 455–458 (2003) ADSCrossRef Ivanova, E.A., Krivtsov, A.M., Morozov, N.F., Firsova, A.D.: Inclusion of the moment interaction in the calculation of the flexural rigidity of nanostructures. Dokl. Phys. 48(8), 455–458 (2003) ADSCrossRef
41.
go back to reference Byzov, A.P., Ivanova, E.A.: Mathematical modelling of the moment interactions of particles with rotary degrees of freedom. In: Scientific and Technical Sheets of St. Petersburg State Technical University. No. 2, pp. 260–268 (2007). (In Russian) Byzov, A.P., Ivanova, E.A.: Mathematical modelling of the moment interactions of particles with rotary degrees of freedom. In: Scientific and Technical Sheets of St. Petersburg State Technical University. No. 2, pp. 260–268 (2007). (In Russian)
42.
go back to reference Zhilin, P.A.: Rigid Body Dynamics. Polytechnic University Publishing House, St. Petersburg (2015). (In Russian) Zhilin, P.A.: Rigid Body Dynamics. Polytechnic University Publishing House, St. Petersburg (2015). (In Russian)
43.
go back to reference Altenbach, H., Maugin, G.A., Erofeev, V. (eds.): Mechanics of Generalized Continua. Springer, Berlin (2011) MATH Altenbach, H., Maugin, G.A., Erofeev, V. (eds.): Mechanics of Generalized Continua. Springer, Berlin (2011) MATH
44.
go back to reference Altenbach, H., Forest, S., Krivtsov, A. (eds.): Generalized Continua as Models for Materials with Multi-scale Effects or Under Multi-field Actions. Springer, Berlin (2013) Altenbach, H., Forest, S., Krivtsov, A. (eds.): Generalized Continua as Models for Materials with Multi-scale Effects or Under Multi-field Actions. Springer, Berlin (2013)
45.
go back to reference Altenbach, H., Forest, S. (eds.): Generalized Continua as Models for Classical and Advanced Materials. Springer, Berlin (2016) Altenbach, H., Forest, S. (eds.): Generalized Continua as Models for Classical and Advanced Materials. Springer, Berlin (2016)
46.
go back to reference Zhilin, P.A.: Rigid body oscillator: a general model and some results. Acta Mech. 142, 169–193 (2000) CrossRef Zhilin, P.A.: Rigid body oscillator: a general model and some results. Acta Mech. 142, 169–193 (2000) CrossRef
47.
go back to reference Zhilin, P.A.: A new approach to the analysis of free rotations of rigid bodies. Z. Angew. Math. Mech. 76(4), 187–204 (1996) MathSciNetCrossRef Zhilin, P.A.: A new approach to the analysis of free rotations of rigid bodies. Z. Angew. Math. Mech. 76(4), 187–204 (1996) MathSciNetCrossRef
48.
go back to reference Zhilin, P.A.: Rotations of rigid body with small angles of nutation. Z. Angew. Math. Mech. 76(2), 711–712 (1996) MathSciNetMATH Zhilin, P.A.: Rotations of rigid body with small angles of nutation. Z. Angew. Math. Mech. 76(2), 711–712 (1996) MathSciNetMATH
49.
go back to reference Zhilin, P.A., Sorokin, S.A.: The motion of gyrostat on nonlinear elastic foundation. Z. Angew. Math. Mech. 78(2), 837–838 (1998) MATH Zhilin, P.A., Sorokin, S.A.: The motion of gyrostat on nonlinear elastic foundation. Z. Angew. Math. Mech. 78(2), 837–838 (1998) MATH
50.
go back to reference Zhilin, P.A.: Dynamics of the two rotors gyrostat on a nonlinear elastic foundation. Z. Angew. Math. Mech. 79(2), 399–400 (1999) Zhilin, P.A.: Dynamics of the two rotors gyrostat on a nonlinear elastic foundation. Z. Angew. Math. Mech. 79(2), 399–400 (1999)
51.
go back to reference Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2(1), 197–226 (1958) MathSciNetCrossRef Noll, W.: A mathematical theory of the mechanical behavior of continuous media. Arch. Ration. Mech. Anal. 2(1), 197–226 (1958) MathSciNetCrossRef
52.
go back to reference Grekova, E.F., Maugin, G.A.: Modelling of complex elastic crystals by means of multi-spin micromorphic media. Int. J. Eng. Sci. 43(5), 494–519 (2005) MathSciNetCrossRef Grekova, E.F., Maugin, G.A.: Modelling of complex elastic crystals by means of multi-spin micromorphic media. Int. J. Eng. Sci. 43(5), 494–519 (2005) MathSciNetCrossRef
Metadata
Title
On the Use of the Continuum Mechanics Method for Describing Interactions in Discrete Systems with Rotational Degrees of Freedom
Author
Elena A. Ivanova
Publication date
23-05-2018
Publisher
Springer Netherlands
Published in
Journal of Elasticity / Issue 2/2018
Print ISSN: 0374-3535
Electronic ISSN: 1573-2681
DOI
https://doi.org/10.1007/s10659-018-9676-3

Other articles of this Issue 2/2018

Journal of Elasticity 2/2018 Go to the issue

Premium Partners