Skip to main content
Top
Published in: Advances in Manufacturing 2/2013

01-06-2013

Opposite phenomenon to the flying ice cube in molecular dynamics simulations of flexible TIP3P water

Authors: Liu-Ming Yan, Chao Sun, Hui-Ting Liu

Published in: Advances in Manufacturing | Issue 2/2013

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

An opposite phenomenon to the flying ice cube where kinetic energy is drained from the high frequency vibrational motion to the low frequency translational motion and rotational motion (Harvey et al., J Comput Chem 19:726–740, 1998) is reported in molecular dynamics simulations of the flexible TIP3P water. It is found that kinetic energy is drained from the low frequency translational motion and rotational motion to the high frequency vibrational motion of the flexible TIP3P water. In addition, the equipartition theorem is not applicable to the flexible TIP3P water, but applicable to the rigid TIP3P water. However, the Maxwell–Boltzmann velocity distribution is satisfied for cases even the equipartition theorem is not applicable.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chandrasekhar S (1939) An introduction to the study of stellar structure. University of Chicago Press, Chicago, pp 49–53 Chandrasekhar S (1939) An introduction to the study of stellar structure. University of Chicago Press, Chicago, pp 49–53
2.
go back to reference Tolman RC (1918) A general theory of energy partition with applications to quantum theory. Phys Rev 11(4):261–275MathSciNetCrossRef Tolman RC (1918) A general theory of energy partition with applications to quantum theory. Phys Rev 11(4):261–275MathSciNetCrossRef
3.
go back to reference Martínez S, Pennini F, Plastino A et al (2002) On the equipartition and virial theorems. Phys A 305(1–2):48–51MathSciNetMATH Martínez S, Pennini F, Plastino A et al (2002) On the equipartition and virial theorems. Phys A 305(1–2):48–51MathSciNetMATH
4.
go back to reference Plastino AR, Lima JAS (1999) Equipartition and virial theorems within general thermostatistical formalisms. Phys Lett A 260(1–2):46–54CrossRef Plastino AR, Lima JAS (1999) Equipartition and virial theorems within general thermostatistical formalisms. Phys Lett A 260(1–2):46–54CrossRef
5.
go back to reference Uline MJ, Siderius DW, Corti DS (2008) On the generalized equipartition theorem in molecular dynamics ensembles and the microcanonical thermodynamics of small systems. J Chem Phys 128(12):124301CrossRef Uline MJ, Siderius DW, Corti DS (2008) On the generalized equipartition theorem in molecular dynamics ensembles and the microcanonical thermodynamics of small systems. J Chem Phys 128(12):124301CrossRef
6.
go back to reference Schnack J (1998) Molecular dynamics investigations on a quantum system in a thermostat. Phys A 259(1–2):49–58MathSciNet Schnack J (1998) Molecular dynamics investigations on a quantum system in a thermostat. Phys A 259(1–2):49–58MathSciNet
7.
go back to reference Shirts RB, Burt SR, Johnson AM (2006) Periodic boundary condition induced breakdown of the equipartition principle and other kinetic effects of finite sample size in classical hard-sphere molecular dynamics simulation. J Chem Phys 125(16):164102CrossRef Shirts RB, Burt SR, Johnson AM (2006) Periodic boundary condition induced breakdown of the equipartition principle and other kinetic effects of finite sample size in classical hard-sphere molecular dynamics simulation. J Chem Phys 125(16):164102CrossRef
8.
go back to reference Shirts RB, Shirts MR (2002) Deviations from the Boltzmann distribution in small microcanonical quantum systems: two approximate one-particle energy distributions. J Chem Phys 117(12):5564–5575CrossRef Shirts RB, Shirts MR (2002) Deviations from the Boltzmann distribution in small microcanonical quantum systems: two approximate one-particle energy distributions. J Chem Phys 117(12):5564–5575CrossRef
9.
go back to reference Bakunin OG (2005) Correlation effects and nonlocal velocity distribution functions. Phys A 346(3–4):284–294 Bakunin OG (2005) Correlation effects and nonlocal velocity distribution functions. Phys A 346(3–4):284–294
10.
go back to reference Keffer DJ, Baig C, Adhangale P et al (2008) A generalized Hamiltonian-based algorithm for rigorous equilibrium molecular dynamics simulation in the canonical ensemble. J Non-Newton Fluid Mech 152(1–3):129–139MATHCrossRef Keffer DJ, Baig C, Adhangale P et al (2008) A generalized Hamiltonian-based algorithm for rigorous equilibrium molecular dynamics simulation in the canonical ensemble. J Non-Newton Fluid Mech 152(1–3):129–139MATHCrossRef
11.
go back to reference Campisi M (2005) On the mechanical foundations of thermodynamics: the generalized Helmholtz theorem. Stud Hist Philos Sci Part B 36(2):275–290MathSciNetMATHCrossRef Campisi M (2005) On the mechanical foundations of thermodynamics: the generalized Helmholtz theorem. Stud Hist Philos Sci Part B 36(2):275–290MathSciNetMATHCrossRef
12.
go back to reference Criado-Sancho M, Jou D, Casas-Vázquez J (2006) Nonequilibrium kinetic temperatures in flowing gases. Phys Lett A 350(5–6):339–341CrossRef Criado-Sancho M, Jou D, Casas-Vázquez J (2006) Nonequilibrium kinetic temperatures in flowing gases. Phys Lett A 350(5–6):339–341CrossRef
13.
go back to reference Allen MP, Tildesley DJ (1990) Computer simulation of liquids. Oxford University Press, Oxford Allen MP, Tildesley DJ (1990) Computer simulation of liquids. Oxford University Press, Oxford
14.
go back to reference Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic Press, New York Frenkel D, Smit B (2002) Understanding molecular simulation: from algorithms to applications, 2nd edn. Academic Press, New York
15.
go back to reference Harvey SC, Tan RKZ, Cheatham TE III (1998) The flying ice cube: velocity rescaling in molecular dynamics leads to violation of energy equipartition. J Comput Chem 19(7):726–740CrossRef Harvey SC, Tan RKZ, Cheatham TE III (1998) The flying ice cube: velocity rescaling in molecular dynamics leads to violation of energy equipartition. J Comput Chem 19(7):726–740CrossRef
16.
go back to reference Mohazzabi P, Helvey SL, McCumber J (2002) Maxwellian distribution in non-classical regime. Phys A 316(1–4):314–322MathSciNetMATH Mohazzabi P, Helvey SL, McCumber J (2002) Maxwellian distribution in non-classical regime. Phys A 316(1–4):314–322MathSciNetMATH
17.
go back to reference Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935CrossRef Jorgensen WL, Chandrasekhar J, Madura JD et al (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935CrossRef
18.
go back to reference Liew CC, Inomata H, Arai K (1998) Flexible molecular models for molecular dynamics study of near and supercritical water. Fluid Phase Equilib 144(1–2):287–298CrossRef Liew CC, Inomata H, Arai K (1998) Flexible molecular models for molecular dynamics study of near and supercritical water. Fluid Phase Equilib 144(1–2):287–298CrossRef
19.
go back to reference Neria E, Fischer S, Karplus M (1996) Simulation of activation free energies in molecular systems. J Chem Phys 105(5):1902–1921CrossRef Neria E, Fischer S, Karplus M (1996) Simulation of activation free energies in molecular systems. J Chem Phys 105(5):1902–1921CrossRef
20.
go back to reference Yan L, Zhu S, Ji X et al (2007) Proton hopping in phosphoric acid solvated NAFION membrane: a molecular simulation study. J Phys Chem B 111(23):6357–6363CrossRef Yan L, Zhu S, Ji X et al (2007) Proton hopping in phosphoric acid solvated NAFION membrane: a molecular simulation study. J Phys Chem B 111(23):6357–6363CrossRef
21.
go back to reference Guillot B (2002) A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liq 101(1–3):219–260CrossRef Guillot B (2002) A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liq 101(1–3):219–260CrossRef
22.
go back to reference Smith W, Leslie M, Forester TR (2003) Computer code DL_POLY_2.14. 2003: CCLRC. Daresbury Laboratory, Daresbury Smith W, Leslie M, Forester TR (2003) Computer code DL_POLY_2.14. 2003: CCLRC. Daresbury Laboratory, Daresbury
23.
go back to reference Nosé S (1984) A molecular-dynamics method for simulations in the canonical ensemble. Mol Phys 52(2):255–268CrossRef Nosé S (1984) A molecular-dynamics method for simulations in the canonical ensemble. Mol Phys 52(2):255–268CrossRef
24.
go back to reference Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519CrossRef Nosé S (1984) A unified formulation of the constant temperature molecular dynamics methods. J Chem Phys 81(1):511–519CrossRef
25.
go back to reference Hockney RW (1970) Potential calculation and some applications. Methods Comput Phys 9:136–211 Hockney RW (1970) Potential calculation and some applications. Methods Comput Phys 9:136–211
26.
go back to reference Krynicki K, Green CD, Sawyer DW (1978) Pressure and temperature dependence of self-diffusion in water. Faraday Discuss Chem Soc 66:199–208CrossRef Krynicki K, Green CD, Sawyer DW (1978) Pressure and temperature dependence of self-diffusion in water. Faraday Discuss Chem Soc 66:199–208CrossRef
Metadata
Title
Opposite phenomenon to the flying ice cube in molecular dynamics simulations of flexible TIP3P water
Authors
Liu-Ming Yan
Chao Sun
Hui-Ting Liu
Publication date
01-06-2013
Publisher
Shanghai University
Published in
Advances in Manufacturing / Issue 2/2013
Print ISSN: 2095-3127
Electronic ISSN: 2195-3597
DOI
https://doi.org/10.1007/s40436-013-0024-3

Other articles of this Issue 2/2013

Advances in Manufacturing 2/2013 Go to the issue

Premium Partners