Skip to main content
Top
Published in: Optical and Quantum Electronics 8/2020

01-08-2020

Optical propagation patterns in medium modeled by the generalized nonlinear Schrödinger equation

Authors: Ya-nan Liu, Chun-yan Wang

Published in: Optical and Quantum Electronics | Issue 8/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The propagation patterns of optical waves in medium which are described by the generalized nonlinear Schrödinger equation are studied in details. A varied of exact solutions are obtained, which include singular solution, solitary wave solution, periodic solution and double periodic solution. Under the concrete parameters, we analyze the modulus of solutions, from which we can get new propagation patterns.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ablowitz, M.J., Ablowitz, M.A., Prinari, B., Trubatch, A.D.: Discrete and Continuous nonlinear Schrödinger System, pp. 31–35. Cambridge University Press, Cambridge (2004)MATH Ablowitz, M.J., Ablowitz, M.A., Prinari, B., Trubatch, A.D.: Discrete and Continuous nonlinear Schrödinger System, pp. 31–35. Cambridge University Press, Cambridge (2004)MATH
go back to reference Anderson, D.: Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. Lett. 27, 3135–3145 (1983)ADS Anderson, D.: Variational approach to nonlinear pulse propagation in optical fibers. Phys. Rev. Lett. 27, 3135–3145 (1983)ADS
go back to reference Bedaque, P.F., Braaten, E., Hammer, H.W.: Three-body recombination in Bose gases with large scattering length. Phys. Rev. Lett. 908, 50 (2000) Bedaque, P.F., Braaten, E., Hammer, H.W.: Three-body recombination in Bose gases with large scattering length. Phys. Rev. Lett. 908, 50 (2000)
go back to reference Benney, D.J., Newell, A.C.: Propagation of nonlinear wave envelopes. J. Math. Phys. 46, 133–139 (1967)MathSciNetMATH Benney, D.J., Newell, A.C.: Propagation of nonlinear wave envelopes. J. Math. Phys. 46, 133–139 (1967)MathSciNetMATH
go back to reference Biondini, G., Kovačič, G.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 55, 506 (2014)MATH Biondini, G., Kovačič, G.: Inverse scattering transform for the focusing nonlinear Schrödinger equation with nonzero boundary conditions. J. Math. Phys. 55, 506 (2014)MATH
go back to reference Biswas, A., Ekici, M.: Optical solitons in birefringent fibers with quadratic-cubic nonlinearity by extended Jacobi’s elliptic function expansion. Optik 178, 117–121 (2019)ADS Biswas, A., Ekici, M.: Optical solitons in birefringent fibers with quadratic-cubic nonlinearity by extended Jacobi’s elliptic function expansion. Optik 178, 117–121 (2019)ADS
go back to reference Gandarias, M.L., Bruzon, M.S.: Classical and nonclassical symmetries of a generalized Boussinesq equation. J. Math. Phys. 5, 8–12 (1998)MathSciNetMATH Gandarias, M.L., Bruzon, M.S.: Classical and nonclassical symmetries of a generalized Boussinesq equation. J. Math. Phys. 5, 8–12 (1998)MathSciNetMATH
go back to reference Kai, Y.: The classification of the single travelling wave solutions to the variant Boussinesq equations. Pramana 87, 5912 (2016) Kai, Y.: The classification of the single travelling wave solutions to the variant Boussinesq equations. Pramana 87, 5912 (2016)
go back to reference Kai, Y.: Exact solutions and asymptotic solutions of one-dimensional domain walls in nonlinearly coupled system. Nonlinear Dyn. 92, 1665–1677 (2018) Kai, Y.: Exact solutions and asymptotic solutions of one-dimensional domain walls in nonlinearly coupled system. Nonlinear Dyn. 92, 1665–1677 (2018)
go back to reference Kai, Y., et al.: Exact and asymptotic solutions to magnetohydrodynamic flow over a nonlinear stretching sheet with a power-law velocity by the homotopy renormalization method. Phys. Fluids 31, 63606 (2019) Kai, Y., et al.: Exact and asymptotic solutions to magnetohydrodynamic flow over a nonlinear stretching sheet with a power-law velocity by the homotopy renormalization method. Phys. Fluids 31, 63606 (2019)
go back to reference Kanna, T., Lakshmanan, M.: Exact soliton solutions shape changing collisions and partially coherent solitons in coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 49, 601–604 (2001) Kanna, T., Lakshmanan, M.: Exact soliton solutions shape changing collisions and partially coherent solitons in coupled nonlinear Schrödinger equations. Phys. Rev. Lett. 49, 601–604 (2001)
go back to reference Liu, C.S.: Trial equation method and its applications to nonlinear evolution equations. Acta Phys. Sin. 54, 2505–2509 (2005)MathSciNetMATH Liu, C.S.: Trial equation method and its applications to nonlinear evolution equations. Acta Phys. Sin. 54, 2505–2509 (2005)MathSciNetMATH
go back to reference Liu, C.S.: Using trial equation method to solve the exact solutions for two kinds of KdV equations with variable coefficients. Acta Phys. Sin. 54, 4506–4510 (2005)MATH Liu, C.S.: Using trial equation method to solve the exact solutions for two kinds of KdV equations with variable coefficients. Acta Phys. Sin. 54, 4506–4510 (2005)MATH
go back to reference Liu, C.S.: All single traveling wave solutions to (3 + 1)-dimensional Nizhnok–Novikov–Veselov equation. Commun. Theor. Phys. 45, 991–992 (2006)ADSMathSciNet Liu, C.S.: All single traveling wave solutions to (3 + 1)-dimensional Nizhnok–Novikov–Veselov equation. Commun. Theor. Phys. 45, 991–992 (2006)ADSMathSciNet
go back to reference Liu, C.S.: Trial equation method to nonlinear evolution equations with rank inhomogeneous: mathematical discussions and its applications. Comput. Phys. Commun. 45, 219–223 (2006) Liu, C.S.: Trial equation method to nonlinear evolution equations with rank inhomogeneous: mathematical discussions and its applications. Comput. Phys. Commun. 45, 219–223 (2006)
go back to reference Liu, C.S.: A new trial equation method and its applications. Commun. Theor. Phys. 45, 359–357 (2006)ADS Liu, C.S.: A new trial equation method and its applications. Commun. Theor. Phys. 45, 359–357 (2006)ADS
go back to reference Liu, C.S.: Classification of all single travelling wave solutions to Calogero–Degasperis–Focas equation. Commun. Theor. Phys. 48, 601–604 (2007a)ADSMathSciNetMATH Liu, C.S.: Classification of all single travelling wave solutions to Calogero–Degasperis–Focas equation. Commun. Theor. Phys. 48, 601–604 (2007a)ADSMathSciNetMATH
go back to reference Liu, C.S.: The classification of travelling wave solutions and superposition of multi-solutions to Camassa–Holm equation with dispersion. Chin. Phys. B 16, 1832 (2007b) Liu, C.S.: The classification of travelling wave solutions and superposition of multi-solutions to Camassa–Holm equation with dispersion. Chin. Phys. B 16, 1832 (2007b)
go back to reference Liu, C.: The renormalization method based on the Taylor expansion and applications for asymptotic analysis. Nonlinear Dyn. 88, 1099–1124 (2007c) Liu, C.: The renormalization method based on the Taylor expansion and applications for asymptotic analysis. Nonlinear Dyn. 88, 1099–1124 (2007c)
go back to reference Liu, C.S.: Representations and classification of traveling wave solutions to Sinh–Gordon equation. Commun. Theor. Phys. 49, 153–158 (2008)ADSMathSciNetMATH Liu, C.S.: Representations and classification of traveling wave solutions to Sinh–Gordon equation. Commun. Theor. Phys. 49, 153–158 (2008)ADSMathSciNetMATH
go back to reference Liu, C.S.: Solution of ODE \(u^{\prime \prime }+p(u)(u^{\prime })^{2}+q(u)=0\) and applications to classifications of all single travelling wave solutions to some nonlinear mathematical physics equations. Commun. Theor. Phys. 49, 291–296 (2008)ADSMathSciNetMATH Liu, C.S.: Solution of ODE \(u^{\prime \prime }+p(u)(u^{\prime })^{2}+q(u)=0\) and applications to classifications of all single travelling wave solutions to some nonlinear mathematical physics equations. Commun. Theor. Phys. 49, 291–296 (2008)ADSMathSciNetMATH
go back to reference Liu, C.S.: Exponential function rational expansion method for nonlinear differential–difference equations. Chaos Soliton Fractals 40, 708–716 (2009)ADSMathSciNetMATH Liu, C.S.: Exponential function rational expansion method for nonlinear differential–difference equations. Chaos Soliton Fractals 40, 708–716 (2009)ADSMathSciNetMATH
go back to reference Liu, C.S.: Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations. Comput. Phys. Commun. 181, 317–324 (2010)ADSMathSciNetMATH Liu, C.S.: Applications of complete discrimination system for polynomial for classifications of traveling wave solutions to nonlinear differential equations. Comput. Phys. Commun. 181, 317–324 (2010)ADSMathSciNetMATH
go back to reference Liu, C.: The essence of the generalized Newton binomial theorem. Commun. Nonlinear Sci. Numer. Simul. 15, 2766–2768 (2010)ADS Liu, C.: The essence of the generalized Newton binomial theorem. Commun. Nonlinear Sci. Numer. Simul. 15, 2766–2768 (2010)ADS
go back to reference Liu, C.S.: Trial equation method based on symmetry and applications to nonlinear equations arising in mathematical physics. Found. Phys. 41, 793–804 (2011a)ADSMathSciNetMATH Liu, C.S.: Trial equation method based on symmetry and applications to nonlinear equations arising in mathematical physics. Found. Phys. 41, 793–804 (2011a)ADSMathSciNetMATH
go back to reference Liu, Y.: Exact solutions to nonlinear Schrödinger equation with variable coefficients. Appl. Math. Comput. 217, 5866–5869 (2011b) Liu, Y.: Exact solutions to nonlinear Schrödinger equation with variable coefficients. Appl. Math. Comput. 217, 5866–5869 (2011b)
go back to reference Liu, C.: The renormalization method from continuous to discrete dynamical systems: asymptotic solutions. reductions and invariant manifolds. Nonlinear Dyn. 94, 873–888 (2018) Liu, C.: The renormalization method from continuous to discrete dynamical systems: asymptotic solutions. reductions and invariant manifolds. Nonlinear Dyn. 94, 873–888 (2018)
go back to reference Liu, C.S.: Exactly solving some typical Riemann–Liouville fractional models by a general method of separation of variables. Commun. Theor. Phys. 72(5), 055006 (2020)ADSMathSciNet Liu, C.S.: Exactly solving some typical Riemann–Liouville fractional models by a general method of separation of variables. Commun. Theor. Phys. 72(5), 055006 (2020)ADSMathSciNet
go back to reference Liu, Y., Wang, X.: The construction of solutions to Zakharov–Kuznetsov equation with fractional power nonlinear terms. Adv. Differ. Equ. 2019, 134 (2019)MathSciNetMATH Liu, Y., Wang, X.: The construction of solutions to Zakharov–Kuznetsov equation with fractional power nonlinear terms. Adv. Differ. Equ. 2019, 134 (2019)MathSciNetMATH
go back to reference Ma, W.X.: Integrability. In: Scott, A. (ed.) Encyclopedia of Nonlinear Science, pp. 250–253. Taylor-Francis, London (2005) Ma, W.X.: Integrability. In: Scott, A. (ed.) Encyclopedia of Nonlinear Science, pp. 250–253. Taylor-Francis, London (2005)
go back to reference Ma, X.X.: Interaction solutions to the Hirota–Satsuma–Ito equation in (2 + 1)-dimensions. Front. Math. China 14, 619–629 (2019)MathSciNetMATH Ma, X.X.: Interaction solutions to the Hirota–Satsuma–Ito equation in (2 + 1)-dimensions. Front. Math. China 14, 619–629 (2019)MathSciNetMATH
go back to reference Ma, W.X.: A search for lump solutions to a combined fourth-order nonlinear PDE in (2+1)-dimensions. J. Appl. Anal. Comput. 9(4), 1319–1332 (2019)MathSciNet Ma, W.X.: A search for lump solutions to a combined fourth-order nonlinear PDE in (2+1)-dimensions. J. Appl. Anal. Comput. 9(4), 1319–1332 (2019)MathSciNet
go back to reference Ma, W.X.: Lump and interaction solutions to linear PDEs in 2+1 dimensions via symbolic computation. Mod. Phys. Lett. B 33, 1950457 (2019)ADSMathSciNet Ma, W.X.: Lump and interaction solutions to linear PDEs in 2+1 dimensions via symbolic computation. Mod. Phys. Lett. B 33, 1950457 (2019)ADSMathSciNet
go back to reference Ma, X.X.: Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations. Appl. Math. Lett. 102, 106161–7 (2020)MathSciNetMATH Ma, X.X.: Inverse scattering for nonlocal reverse-time nonlinear Schrödinger equations. Appl. Math. Lett. 102, 106161–7 (2020)MathSciNetMATH
go back to reference Ma, W.X., Lee, J.H.: A transformed rational function method and exact solutions to the 3 + 1 dimensional Jimbo–Miwa equation. Chaos Solitons Fractals 42, 1356–1363 (2009)ADSMathSciNetMATH Ma, W.X., Lee, J.H.: A transformed rational function method and exact solutions to the 3 + 1 dimensional Jimbo–Miwa equation. Chaos Solitons Fractals 42, 1356–1363 (2009)ADSMathSciNetMATH
go back to reference Remoissenet, M.: Waves Called Solitons: Concepts and Experiments, vol. 3, pp. 98–100. Springer, Berlin (1999)MATH Remoissenet, M.: Waves Called Solitons: Concepts and Experiments, vol. 3, pp. 98–100. Springer, Berlin (1999)MATH
go back to reference Reyes, M.A., Guti, D.: Nongauge bright soliton of the nonlinear Schrödinger (NLS) equation and a family of generalized NLS equations. Commun. Theor. Phys. 31, 20 (2016) Reyes, M.A., Guti, D.: Nongauge bright soliton of the nonlinear Schrödinger (NLS) equation and a family of generalized NLS equations. Commun. Theor. Phys. 31, 20 (2016)
go back to reference Seadawy, A.R.: Exact solutions of a two-dimensional nonlinear Schrödinger equation. Appl. Math. Lett. 25, 687–691 (2012)MathSciNetMATH Seadawy, A.R.: Exact solutions of a two-dimensional nonlinear Schrödinger equation. Appl. Math. Lett. 25, 687–691 (2012)MathSciNetMATH
go back to reference Seadawy, A.R.: Approximation solutions of derivative nonlinear Schrödinger equation with computational applications by variational method. Eur. Phys. J. Plus 130, 1–10 (2015) Seadawy, A.R.: Approximation solutions of derivative nonlinear Schrödinger equation with computational applications by variational method. Eur. Phys. J. Plus 130, 1–10 (2015)
go back to reference Triki, H., Porsezian, K.: Bright and kink solitons in the quadratic-cubic nonlinear Schrödinger equation with time and space modulated nonlinearities and potentials. J. Mod. Optic 12, 1–9 (2017) Triki, H., Porsezian, K.: Bright and kink solitons in the quadratic-cubic nonlinear Schrödinger equation with time and space modulated nonlinearities and potentials. J. Mod. Optic 12, 1–9 (2017)
go back to reference Wang, C.Y., Gao, W.J.: Asymptotic analysis of reduced Navier–Stokes equations by homotopy renormalization method. Rep. Math. Phys. 80, 29–37 (2017)ADSMathSciNetMATH Wang, C.Y., Gao, W.J.: Asymptotic analysis of reduced Navier–Stokes equations by homotopy renormalization method. Rep. Math. Phys. 80, 29–37 (2017)ADSMathSciNetMATH
go back to reference Wang, X., Liu, Y.: All single travelling wave patterns to fractional Jimbo–Miwa equation and Zakharov–Kuznetsov equation. Pramana-J. Phys. 92(3), 31 (2019)ADS Wang, X., Liu, Y.: All single travelling wave patterns to fractional Jimbo–Miwa equation and Zakharov–Kuznetsov equation. Pramana-J. Phys. 92(3), 31 (2019)ADS
go back to reference Wang, X., Liu, Y.: All envelop traveling wave patterns to nonlinear Schrödinger equation in parabolic law medium. Mod. Phys. Lett. B 33, 1850428 (2019)ADS Wang, X., Liu, Y.: All envelop traveling wave patterns to nonlinear Schrödinger equation in parabolic law medium. Mod. Phys. Lett. B 33, 1850428 (2019)ADS
go back to reference Yu, F.: Multi-rogue waves for a higher-order nonlinear Schrödinger equation in optical fibers. Appl. Math. Comput. 220, 176–184 (2013)MathSciNetMATH Yu, F.: Multi-rogue waves for a higher-order nonlinear Schrödinger equation in optical fibers. Appl. Math. Comput. 220, 176–184 (2013)MathSciNetMATH
go back to reference Zeng, J., Malomed, B.A.: Bright solitons in defocusing media with spatial modulation of the quintic nonlinearity. Phys. Rev. E 33, 103–107 (2012) Zeng, J., Malomed, B.A.: Bright solitons in defocusing media with spatial modulation of the quintic nonlinearity. Phys. Rev. E 33, 103–107 (2012)
Metadata
Title
Optical propagation patterns in medium modeled by the generalized nonlinear Schrödinger equation
Authors
Ya-nan Liu
Chun-yan Wang
Publication date
01-08-2020
Publisher
Springer US
Published in
Optical and Quantum Electronics / Issue 8/2020
Print ISSN: 0306-8919
Electronic ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-020-02486-3

Other articles of this Issue 8/2020

Optical and Quantum Electronics 8/2020 Go to the issue