Skip to main content
main-content
Top

Hint

Swipe to navigate through the articles of this issue

21-05-2020 | Original Research Paper | Issue 3/2020

Intelligent Service Robotics 3/2020

Optimal configuration selection for stiffness identification of 7-Dof collaborative robots

Journal:
Intelligent Service Robotics > Issue 3/2020
Authors:
Mingwei Hu, Hongguang Wang, Xinan Pan
Important notes

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

Aimed to improve the stiffness identification precision of 7-degree-of-freedom (Dof) collaborative robots (Cobots), an optimal configuration selection method for elastostatic calibration of robots is researched by the influencing factor separation method. Different from previous studies, this method can deal with the influence of redundant Dof on measurement configuration selection of redundant robotic manipulators. The independent influence of each joint on the inverse condition number which is selected as the evaluation criterion is analyzed through the orthogonal design experiment and the analysis of variance, and the optimal measuring configurations of robots for stiffness identification can be selected from joint space. Based on a 7-Dof Cobot SHIR5-III, static compliance simulations are performed to identify joint stiffness of the robot. Compared to identification results by using the configurations having large, medium and small inverse condition number, the effectiveness of this optimal configuration selection method is verified and the identification accuracy can be essentially improved with configurations having a large inverse condition number.

Please log in to get access to this content

To get access to this content you need the following product:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literature
About this article

Other articles of this Issue 3/2020

Intelligent Service Robotics 3/2020 Go to the issue