Skip to main content
Top
Published in: Acta Mechanica 9/2021

28-06-2021 | Original Paper

Optimal control of the Cattaneo–Hristov heat diffusion model

Authors: Derya Avcı, Beyza Billur İskender Eroğlu

Published in: Acta Mechanica | Issue 9/2021

Login to get access

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this study, the optimal control problem for Cattaneo–Hristov heat diffusion, a partial differential equation including both fractional-order Caputo–Fabrizio and integer-order derivatives, is formulated for a rigid heat conductor with finite length. The state and control functions denoting temperature and heat source, respectively, are represented by eigenfunctions to eliminate the spatial coordinate. The necessary optimality conditions corresponding to a time-dependent dynamical system are derived via Hamilton’s principle. Because the optimality system contains both integer-order and fractional-order left- and right-side Caputo–Fabrizio derivatives, it cannot be solved analytically. Therefore, a numerical method based on the Volterra integral approach combined with the forward–backward finite difference schemes is applied to solve the system. Finally, the physical behaviours of the temperature state and heat control under the variation of the fractional parameter are depicted graphically.
Literature
1.
go back to reference Kirk, D.E.: Optimal Control Theory: An Introduction. Courier Corporation, New York (2004) Kirk, D.E.: Optimal Control Theory: An Introduction. Courier Corporation, New York (2004)
4.
go back to reference Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368–379 (2002)MathSciNetMATHCrossRef Agrawal, O.P.: Formulation of Euler-Lagrange equations for fractional variational problems. J. Math. Anal. Appl. 272(1), 368–379 (2002)MathSciNetMATHCrossRef
5.
6.
go back to reference Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A: Math. Theor. 40(24), 6287 (2007)MathSciNetMATHCrossRef Agrawal, O.P.: Fractional variational calculus in terms of Riesz fractional derivatives. J. Phys. A: Math. Theor. 40(24), 6287 (2007)MathSciNetMATHCrossRef
7.
go back to reference Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38(1–4), 323–337 (2004)MathSciNetMATHCrossRef Agrawal, O.P.: A general formulation and solution scheme for fractional optimal control problems. Nonlinear Dyn. 38(1–4), 323–337 (2004)MathSciNetMATHCrossRef
8.
go back to reference Agrawal, O.P.: A formulation and numerical scheme for fractional optimal control problems. J. Vib. Control 14(9–10), 1291–1299 (2008)MathSciNetMATHCrossRef Agrawal, O.P.: A formulation and numerical scheme for fractional optimal control problems. J. Vib. Control 14(9–10), 1291–1299 (2008)MathSciNetMATHCrossRef
9.
go back to reference Odzijewicz, T., Malinowska, A.B., Torres, D.F.: Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal-Theor. 75(3), 1507–1515 (2012)MathSciNetMATHCrossRef Odzijewicz, T., Malinowska, A.B., Torres, D.F.: Fractional variational calculus with classical and combined Caputo derivatives. Nonlinear Anal-Theor. 75(3), 1507–1515 (2012)MathSciNetMATHCrossRef
10.
go back to reference Herzallah, M.A.: Variational calculus with fractional and classical derivatives. Rom. J. Phys. 57(9–10), 1261–1269 (2012)MathSciNet Herzallah, M.A.: Variational calculus with fractional and classical derivatives. Rom. J. Phys. 57(9–10), 1261–1269 (2012)MathSciNet
11.
go back to reference Kumar, D., Singh, J., Tanwar, K., Baleanu, D.: A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws. Int. J. Heat Mass Transf. 138, 1222–1227 (2019)CrossRef Kumar, D., Singh, J., Tanwar, K., Baleanu, D.: A new fractional exothermic reactions model having constant heat source in porous media with power, exponential and Mittag-Leffler laws. Int. J. Heat Mass Transf. 138, 1222–1227 (2019)CrossRef
12.
go back to reference Kumar, D., Singh, J., Baleanu, D.: On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law. Math. Method. Appl. Sci. 43(1), 443–457 (2020)MathSciNetMATHCrossRef Kumar, D., Singh, J., Baleanu, D.: On the analysis of vibration equation involving a fractional derivative with Mittag-Leffler law. Math. Method. Appl. Sci. 43(1), 443–457 (2020)MathSciNetMATHCrossRef
13.
go back to reference Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015) Caputo, M., Fabrizio, M.: A new definition of fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 73–85 (2015)
14.
go back to reference Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)CrossRef Atangana, A., Baleanu, D.: New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. Therm. Sci. 20(2), 763–769 (2016)CrossRef
15.
go back to reference Zhang, J., Ma, X., Li, L.: Optimality conditions for fractional variational problems with Caputo-Fabrizio fractional derivatives. Adv. Differ. Equ. 2017(1), 1–14 (2017)MathSciNetMATHCrossRef Zhang, J., Ma, X., Li, L.: Optimality conditions for fractional variational problems with Caputo-Fabrizio fractional derivatives. Adv. Differ. Equ. 2017(1), 1–14 (2017)MathSciNetMATHCrossRef
16.
go back to reference Abdeljawad, T., Baleanu, D.: On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 80(1), 11–27 (2017)MathSciNetMATHCrossRef Abdeljawad, T., Baleanu, D.: On fractional derivatives with exponential kernel and their discrete versions. Rep. Math. Phys. 80(1), 11–27 (2017)MathSciNetMATHCrossRef
17.
go back to reference Bastos, N.R.: Calculus of variations involving Caputo-Fabrizio fractional differentiation. Stat. Optim. Inf. Comput. 6(1), 12–21 (2018)MathSciNetCrossRef Bastos, N.R.: Calculus of variations involving Caputo-Fabrizio fractional differentiation. Stat. Optim. Inf. Comput. 6(1), 12–21 (2018)MathSciNetCrossRef
18.
go back to reference Abdeljawad, T., Atangana, A., Gómez-Aguilar, J.F., Jarad, F.: On a more general fractional integration by parts formulae and applications. Physica A Stat. Mech. Appl. 536, (2019)MathSciNetCrossRef Abdeljawad, T., Atangana, A., Gómez-Aguilar, J.F., Jarad, F.: On a more general fractional integration by parts formulae and applications. Physica A Stat. Mech. Appl. 536, (2019)MathSciNetCrossRef
19.
go back to reference Yıldız, T.A., Jajarmi, A., Yıldız, B., Baleanu, D.: New aspects of time fractional optimal control problems within operators with nonsingular kernel. Discrete Contin. Dyn. Syst. Ser. S 13(3), 407–428 (2020)MathSciNetMATH Yıldız, T.A., Jajarmi, A., Yıldız, B., Baleanu, D.: New aspects of time fractional optimal control problems within operators with nonsingular kernel. Discrete Contin. Dyn. Syst. Ser. S 13(3), 407–428 (2020)MathSciNetMATH
20.
go back to reference Mortezaee, M., Ghovatmand, M., Nazemi, A.: An application of generalized fuzzy hyperbolic model for solving fractional optimal control problems with Caputo-Fabrizio derivative. Neural Process. Lett. 52(3), 1997–2020 (2020)CrossRef Mortezaee, M., Ghovatmand, M., Nazemi, A.: An application of generalized fuzzy hyperbolic model for solving fractional optimal control problems with Caputo-Fabrizio derivative. Neural Process. Lett. 52(3), 1997–2020 (2020)CrossRef
21.
go back to reference Naik, P.A., Owolabi, K.M., Yavuz, M., Zu, J.: Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells. Chaos Soliton. Fract. 140, (2020)MathSciNetCrossRef Naik, P.A., Owolabi, K.M., Yavuz, M., Zu, J.: Chaotic dynamics of a fractional order HIV-1 model involving AIDS-related cancer cells. Chaos Soliton. Fract. 140, (2020)MathSciNetCrossRef
22.
go back to reference Naik, P.A., Yavuz, M., Qureshi, S., Zu, J., Townley, S.: Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan. Eur. Phys. J. Plus 135(10), 1–42 (2020)CrossRef Naik, P.A., Yavuz, M., Qureshi, S., Zu, J., Townley, S.: Modeling and analysis of COVID-19 epidemics with treatment in fractional derivatives using real data from Pakistan. Eur. Phys. J. Plus 135(10), 1–42 (2020)CrossRef
23.
go back to reference Özdemir, N., Uçar, E.: Investigating of an immune system-cancer mathematical model with Mittag-Leffler kernel. AIMS Math. 5(2), 1519–1531 (2020)MathSciNetCrossRef Özdemir, N., Uçar, E.: Investigating of an immune system-cancer mathematical model with Mittag-Leffler kernel. AIMS Math. 5(2), 1519–1531 (2020)MathSciNetCrossRef
24.
go back to reference Kumar, D., Singh, J. (eds.): Fractional Calculus in Medical and Health Science. CRC Press, Abingdon (2020) Kumar, D., Singh, J. (eds.): Fractional Calculus in Medical and Health Science. CRC Press, Abingdon (2020)
25.
go back to reference Bonyah, E., Gomez-Aguilar, J.F., Adu, A.: Stability analysis and optimal control of a fractional human African trypanosomiasis model. Chaos Soliton. Fract. 117, 150–160 (2018)MathSciNetMATHCrossRef Bonyah, E., Gomez-Aguilar, J.F., Adu, A.: Stability analysis and optimal control of a fractional human African trypanosomiasis model. Chaos Soliton. Fract. 117, 150–160 (2018)MathSciNetMATHCrossRef
26.
go back to reference Jajarmi, A., Ghanbari, B., Baleanu, D.: A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence. Chaos 29(9), (2019)MathSciNetMATHCrossRef Jajarmi, A., Ghanbari, B., Baleanu, D.: A new and efficient numerical method for the fractional modeling and optimal control of diabetes and tuberculosis co-existence. Chaos 29(9), (2019)MathSciNetMATHCrossRef
27.
go back to reference Baleanu, D., Jajarmi, A., Sajjadi, S.S., Mozyrska, D.: A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator. Chaos 29(8), (2019)MathSciNetMATHCrossRef Baleanu, D., Jajarmi, A., Sajjadi, S.S., Mozyrska, D.: A new fractional model and optimal control of a tumor-immune surveillance with non-singular derivative operator. Chaos 29(8), (2019)MathSciNetMATHCrossRef
28.
go back to reference Sweilam, N.H., Al Mekhlafi, S.M.: Optimal control for a nonlinear mathematical model of tumor under immune suppression: a numerical approach. Optim. Control. Appl. Metal 39(5), 1581–1596 (2018)MathSciNetMATHCrossRef Sweilam, N.H., Al Mekhlafi, S.M.: Optimal control for a nonlinear mathematical model of tumor under immune suppression: a numerical approach. Optim. Control. Appl. Metal 39(5), 1581–1596 (2018)MathSciNetMATHCrossRef
29.
go back to reference Özdemir, N., Povstenko, Y., Avcı, D., İskender, B.B.: Optimal boundary control of thermal stresses in a plate based on time-fractional heat conduction equation. J. Therm. Stresses 37(8), 969–980 (2014)CrossRef Özdemir, N., Povstenko, Y., Avcı, D., İskender, B.B.: Optimal boundary control of thermal stresses in a plate based on time-fractional heat conduction equation. J. Therm. Stresses 37(8), 969–980 (2014)CrossRef
30.
go back to reference Povstenko, Y., Avcı, D., İskender Eroğlu, B.B., Özdemir, N.: Control of thermal stresses in axissymmetric problems of fractional thermoelasticity for an infinite cylindrical domain. Therm. Sci. 21(1 Part A), 19–28 (2017) Povstenko, Y., Avcı, D., İskender Eroğlu, B.B., Özdemir, N.: Control of thermal stresses in axissymmetric problems of fractional thermoelasticity for an infinite cylindrical domain. Therm. Sci. 21(1 Part A), 19–28 (2017)
31.
go back to reference İskender Eroğlu, B.B., Avcı, D., Özdemir, N.: Optimal control problem for a conformable fractional heat conduction equation. Acta Phys. Pol., A 132(3), 658–662 (2017) İskender Eroğlu, B.B., Avcı, D., Özdemir, N.: Optimal control problem for a conformable fractional heat conduction equation. Acta Phys. Pol., A 132(3), 658–662 (2017)
32.
go back to reference Lazo, J.M., Torres, D.F.M.: Variational calculus with conformable fractional derivatives. IEEE-CAA J. Autom. 4, 340–352 (2017)MathSciNet Lazo, J.M., Torres, D.F.M.: Variational calculus with conformable fractional derivatives. IEEE-CAA J. Autom. 4, 340–352 (2017)MathSciNet
33.
go back to reference İskender Eroğlu, B.B., Yapışkan, D.: Local generalization of transversality conditions for optimal control problem. Math. Model. Nat. Phenom. 14(3), 310 (2019)MathSciNetMATHCrossRef İskender Eroğlu, B.B., Yapışkan, D.: Local generalization of transversality conditions for optimal control problem. Math. Model. Nat. Phenom. 14(3), 310 (2019)MathSciNetMATHCrossRef
34.
go back to reference İskender Eroğlu, B.B., Yapışkan, D.: Generalized conformable variational calculus and optimal control problems with variable terminal conditions. AIMS Math. 5(2), 1105–1126 (2020)MathSciNetCrossRef İskender Eroğlu, B.B., Yapışkan, D.: Generalized conformable variational calculus and optimal control problems with variable terminal conditions. AIMS Math. 5(2), 1105–1126 (2020)MathSciNetCrossRef
35.
go back to reference Hristov, J.: Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative. Therm. Sci. 20(2), 757–762 (2016)CrossRef Hristov, J.: Transient heat diffusion with a non-singular fading memory: from the Cattaneo constitutive equation with Jeffrey’s kernel to the Caputo-Fabrizio time-fractional derivative. Therm. Sci. 20(2), 757–762 (2016)CrossRef
36.
go back to reference Povstenko, Y.: Fractional Cattaneo-type equations and generalized thermoelasticity. J. Therm. Stresses 34(2), 97–114 (2011)CrossRef Povstenko, Y.: Fractional Cattaneo-type equations and generalized thermoelasticity. J. Therm. Stresses 34(2), 97–114 (2011)CrossRef
37.
go back to reference Povstenko, Y., Ostoja-Starzewski, M.: Doppler effect described by the solutions of the Cattaneo telegraph equation. Acta Mech. 232, 725–740 (2021)MathSciNetMATHCrossRef Povstenko, Y., Ostoja-Starzewski, M.: Doppler effect described by the solutions of the Cattaneo telegraph equation. Acta Mech. 232, 725–740 (2021)MathSciNetMATHCrossRef
38.
go back to reference Hristov, J.: Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. In: Bhalekar, S. (ed.) Current Developments in Mathematical Sciences Volume: 1 Frontiers in Fractional Calculus, pp. 270–342. Bentham Science Publishers, Sharjah (2017) Hristov, J.: Derivatives with non-singular kernels from the Caputo-Fabrizio definition and beyond: appraising analysis with emphasis on diffusion models. In: Bhalekar, S. (ed.) Current Developments in Mathematical Sciences Volume: 1 Frontiers in Fractional Calculus, pp. 270–342. Bentham Science Publishers, Sharjah (2017)
39.
go back to reference Hristov, J.: Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative from Cattaneo concept with Jeffrey’s Kernel and analytical solutions. Therm. Sci. 21(2), 827–839 (2017)MathSciNetCrossRef Hristov, J.: Steady-state heat conduction in a medium with spatial non-singular fading memory: derivation of Caputo-Fabrizio space-fractional derivative from Cattaneo concept with Jeffrey’s Kernel and analytical solutions. Therm. Sci. 21(2), 827–839 (2017)MathSciNetCrossRef
40.
go back to reference Alkahtani, B.S.T., Atangana, A.: A note on Cattaneo–Hristov model with non–singular fading memory. Therm. Sci. 21(1 Part A), 1–7 (2017) Alkahtani, B.S.T., Atangana, A.: A note on Cattaneo–Hristov model with non–singular fading memory. Therm. Sci. 21(1 Part A), 1–7 (2017)
41.
go back to reference Koca, I., Atangana, A.: Solutions of Cattaneo–Hristov model of elastic heat diffusion with Caputo–Fabrizio and Atangana–Baleanu fractional derivatives. Therm. Sci. 21(6 Part A), 2299–2305 (2017) Koca, I., Atangana, A.: Solutions of Cattaneo–Hristov model of elastic heat diffusion with Caputo–Fabrizio and Atangana–Baleanu fractional derivatives. Therm. Sci. 21(6 Part A), 2299–2305 (2017)
42.
go back to reference Sene, N.: Solutions of fractional diffusion equations and Cattaneo-Hristov diffusion model. Int. J. Anal. Appl. 17(2), 191–207 (2019)MathSciNetMATH Sene, N.: Solutions of fractional diffusion equations and Cattaneo-Hristov diffusion model. Int. J. Anal. Appl. 17(2), 191–207 (2019)MathSciNetMATH
43.
go back to reference İskender Eroğlu, B.B., Avcı, D.: Separable solutions of Cattaneo-Hristov heat diffusion equation in a line segment: Cauchy and source problems. Alex. Eng. J. 60(2), 2347–2353 (2021)CrossRef İskender Eroğlu, B.B., Avcı, D.: Separable solutions of Cattaneo-Hristov heat diffusion equation in a line segment: Cauchy and source problems. Alex. Eng. J. 60(2), 2347–2353 (2021)CrossRef
44.
go back to reference Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 87–92 (2015) Losada, J., Nieto, J.J.: Properties of a new fractional derivative without singular kernel. Progr. Fract. Differ. Appl. 1(2), 87–92 (2015)
45.
go back to reference Caputo, M., Fabrizio, M.: On the notion of fractional derivative and applications to the hysteresis phenomena. Meccanica 52, 3043–3052 (2017)MathSciNetMATHCrossRef Caputo, M., Fabrizio, M.: On the notion of fractional derivative and applications to the hysteresis phenomena. Meccanica 52, 3043–3052 (2017)MathSciNetMATHCrossRef
46.
go back to reference Atanackovic, T.M., Pilipovic, S., Zorica, D.: Properties of the Caputo-Fabrizio fractional derivative and its distributional settings. Frac. Calc. Appl. Anal. 21(1), 29–44 (2018)MathSciNetMATHCrossRef Atanackovic, T.M., Pilipovic, S., Zorica, D.: Properties of the Caputo-Fabrizio fractional derivative and its distributional settings. Frac. Calc. Appl. Anal. 21(1), 29–44 (2018)MathSciNetMATHCrossRef
47.
go back to reference Atanackovic, T.M., Janev, M., Pilipovic, S.: Wave equation in fractional Zener-type viscoelastic media involving Caputo-Fabrizio fractional derivatives. Meccanica 54, 155–167 (2019)MathSciNetMATHCrossRef Atanackovic, T.M., Janev, M., Pilipovic, S.: Wave equation in fractional Zener-type viscoelastic media involving Caputo-Fabrizio fractional derivatives. Meccanica 54, 155–167 (2019)MathSciNetMATHCrossRef
48.
go back to reference Hristov, J.: Linear viscoelastic responses and constitutive equations in terms of fractional operators with non-singular kernels: Pragmatic approach, memory kernel correspondence requirement and analyses. Eur. Phys. J. Plus 134, 283 (2019)CrossRef Hristov, J.: Linear viscoelastic responses and constitutive equations in terms of fractional operators with non-singular kernels: Pragmatic approach, memory kernel correspondence requirement and analyses. Eur. Phys. J. Plus 134, 283 (2019)CrossRef
49.
go back to reference Cattaneo, C.: On the conduction of heat (in Italian). Atti Sem. Mat. Fis. Univ. Modena 3(1), 83–101 (1948) Cattaneo, C.: On the conduction of heat (in Italian). Atti Sem. Mat. Fis. Univ. Modena 3(1), 83–101 (1948)
Metadata
Title
Optimal control of the Cattaneo–Hristov heat diffusion model
Authors
Derya Avcı
Beyza Billur İskender Eroğlu
Publication date
28-06-2021
Publisher
Springer Vienna
Published in
Acta Mechanica / Issue 9/2021
Print ISSN: 0001-5970
Electronic ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-021-03019-z

Other articles of this Issue 9/2021

Acta Mechanica 9/2021 Go to the issue

Premium Partners