Skip to main content
Top
Published in: Mechanics of Composite Materials 3/2016

09-07-2016

Optimization of the Structure of a Ceramic-Aluminum Alloy Composite Subjected to the Impact of Hard Steel Projectiles

Authors: A. Morka, P. Kędzierski, P. Muzolf

Published in: Mechanics of Composite Materials | Issue 3/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The optimization process for a composite panel with an Al2O3-AA2024 percolation phase subjected to a perpendicular impact of a 7.62 × 54R B32 Armor Piercing projectile is described. It is found that metal-matrix composite/ceramic-matrix composite structures have a lower ballistic resistance than structures in which a hard layer supported by a plastic one. Optimization revealed that the best composite panel with an Al2O3-AA2024 percolation phase could be obtained when the probability distribution of individual materials was described by a highly nonlinear function.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference B. A. Gama, T. A. Bogetti, K. F. Bruce, C. J. Yu, T. D. Claar, H. H. Eifert, and J, W. Gillespie, “Aluminum foam integral armor: a new dimension in armor design,” Composite Structures, 52, No. 3-4, 381-395 (2001). B. A. Gama, T. A. Bogetti, K. F. Bruce, C. J. Yu, T. D. Claar, H. H. Eifert, and J, W. Gillespie, “Aluminum foam integral armor: a new dimension in armor design,” Composite Structures, 52, No. 3-4, 381-395 (2001).
2.
go back to reference J. Wang, N. Zhou, and C. Peng, “Influence of different combinations of explosively welded plates with the same areal density on their antipenetration performance,” Mech. Compos. Mater., 50, No. 5, 623-632 (2014).CrossRef J. Wang, N. Zhou, and C. Peng, “Influence of different combinations of explosively welded plates with the same areal density on their antipenetration performance,” Mech. Compos. Mater., 50, No. 5, 623-632 (2014).CrossRef
3.
go back to reference V. N. Aptukov, V. L. Belousov, and M. A. Kanibolotskii, “Optimization of the structure of layered slab with the penetration of a rigid striker,” Mech. Compos. Mater., No. 2, 252-257 (1986). V. N. Aptukov, V. L. Belousov, and M. A. Kanibolotskii, “Optimization of the structure of layered slab with the penetration of a rigid striker,” Mech. Compos. Mater., No. 2, 252-257 (1986).
4.
go back to reference A. Muc, “Optimization of multilayered composite structures with randomly distributed mechanical properties,” Mech. Compos. Mater., 41, No. 6, 505-510 (2005).CrossRef A. Muc, “Optimization of multilayered composite structures with randomly distributed mechanical properties,” Mech. Compos. Mater., 41, No. 6, 505-510 (2005).CrossRef
5.
go back to reference A. L. Florence, “Interaction of projectiles and composite armor. Part 2. AMMRC-CR-69-15”, Stanford Research Institute, Menlo Park, California. (1969). A. L. Florence, “Interaction of projectiles and composite armor. Part 2. AMMRC-CR-69-15”, Stanford Research Institute, Menlo Park, California. (1969).
6.
go back to reference J. G. Hetherington, “Optimization of two-component composite armours,” Int. J. Impact Eng. 12, No. 3, 409-414 (1992).CrossRef J. G. Hetherington, “Optimization of two-component composite armours,” Int. J. Impact Eng. 12, No. 3, 409-414 (1992).CrossRef
7.
go back to reference 7 B. Wang and G. Lu, “On the optimization of two-component plates against ballistic impact,” J. Mater. Proc. Technol., 57, No. 1-2, 141-145 (1996).CrossRef 7 B. Wang and G. Lu, “On the optimization of two-component plates against ballistic impact,” J. Mater. Proc. Technol., 57, No. 1-2, 141-145 (1996).CrossRef
8.
go back to reference J. Shi, D. Grow, “Effect of double constraints on the optimization of two-component armor systems,” Composite Structures, 79, No. 3, 445-453 (2007).CrossRef J. Shi, D. Grow, “Effect of double constraints on the optimization of two-component armor systems,” Composite Structures, 79, No. 3, 445-453 (2007).CrossRef
9.
go back to reference G. Ben-Dor, A. Dubinsky, and T. Elperin, “Improved Florence model and optimization of two-component armor against single impact or two impacts,” Composite Structures, 88, No. 1, 158-165 (2009).CrossRef G. Ben-Dor, A. Dubinsky, and T. Elperin, “Improved Florence model and optimization of two-component armor against single impact or two impacts,” Composite Structures, 88, No. 1, 158-165 (2009).CrossRef
10.
go back to reference A. A. Growenwold and J. A. Snyman, “Global optimization using dynamic search trajectories,” J. of Global Optimization, 24, No. 1, 51-60 (2002).CrossRef A. A. Growenwold and J. A. Snyman, “Global optimization using dynamic search trajectories,” J. of Global Optimization, 24, No. 1, 51-60 (2002).CrossRef
11.
go back to reference H. E. Romeijn and R. L. Smith. “Simulated annealing and adaptive search in global optimization,” Probability in the Eng. and Informational Sci., 8, No. 4, 571-590 (1994).CrossRef H. E. Romeijn and R. L. Smith. “Simulated annealing and adaptive search in global optimization,” Probability in the Eng. and Informational Sci., 8, No. 4, 571-590 (1994).CrossRef
12.
go back to reference J. A. Snyman, “The LFOPC leap-frog algorithm for constrained optimization,” Int. J. Computers and Mathematics with Applications, 40, No. 8-9, 1085-1096 (2000).CrossRef J. A. Snyman, “The LFOPC leap-frog algorithm for constrained optimization,” Int. J. Computers and Mathematics with Applications, 40, No. 8-9, 1085-1096 (2000).CrossRef
13.
go back to reference M. M. Shokrieh and M. N. Fakhar, “Experimental, analytical and numerical studies of composite,” Mech. Compos. Mater., 47, No. 6, 643-658 (2012).CrossRef M. M. Shokrieh and M. N. Fakhar, “Experimental, analytical and numerical studies of composite,” Mech. Compos. Mater., 47, No. 6, 643-658 (2012).CrossRef
14.
go back to reference C. H. M. Simha and N. S. Brar. “Material model for high-hard steel and ballistic penetration simulations,” Eds by: Staudhammer K. P., Murr L. E., Meyers M. A., Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena. Oxford: Elsevier Sci. Ltd., 2001. p. 509-516. C. H. M. Simha and N. S. Brar. “Material model for high-hard steel and ballistic penetration simulations,” Eds by: Staudhammer K. P., Murr L. E., Meyers M. A., Fundamental Issues and Applications of Shock-Wave and High-Strain-Rate Phenomena. Oxford: Elsevier Sci. Ltd., 2001. p. 509-516.
15.
go back to reference W. J. Kury, D. Breithaupt, and M. C. Tarver, “Detonation waves in trinitrotoluene,” Shock Waves, 9, No. 4, 227-237 (1999).CrossRef W. J. Kury, D. Breithaupt, and M. C. Tarver, “Detonation waves in trinitrotoluene,” Shock Waves, 9, No. 4, 227-237 (1999).CrossRef
16.
go back to reference V. Panov, “Modelling of behaviour of metals at high strain rates [PhD Thesis],”Cranfield: Cranfield University; 2005. V. Panov, “Modelling of behaviour of metals at high strain rates [PhD Thesis],”Cranfield: Cranfield University; 2005.
17.
go back to reference X. Teng and T. Wierzbicki, “Evaluation of six fracture models in high velocity perforation,” Engineering Fracture Mechanics, 73, No. 12, 1653-1678 (2006).CrossRef X. Teng and T. Wierzbicki, “Evaluation of six fracture models in high velocity perforation,” Engineering Fracture Mechanics, 73, No. 12, 1653-1678 (2006).CrossRef
18.
go back to reference D. S. Cronin, K. Bui, C. Kaufmann, G. McIntosh, and T. Berstad, “Implementation and validation of the Johnson-Holmquist ceramic material model in LS-Dyna,” Proc. of 4th Europ. LS-DYNA Users Conf., Ulm, 22-23 May, p.47-60 (2003). D. S. Cronin, K. Bui, C. Kaufmann, G. McIntosh, and T. Berstad, “Implementation and validation of the Johnson-Holmquist ceramic material model in LS-Dyna,” Proc. of 4th Europ. LS-DYNA Users Conf., Ulm, 22-23 May, p.47-60 (2003).
19.
go back to reference A. Tasdemirci and I. W. Hall, “Numerical and experimental studies of damage generation in multi-layer composite materials at high strain rates,” Int. J. Impact Eng., 34, No. 2, 189-204 (2007).CrossRef A. Tasdemirci and I. W. Hall, “Numerical and experimental studies of damage generation in multi-layer composite materials at high strain rates,” Int. J. Impact Eng., 34, No. 2, 189-204 (2007).CrossRef
20.
go back to reference J. Buchar, S. Rolc, and G. Cozzani, “Numerical simulation of the penetration of 7.62 AP projectiles into ceramic armours,” 23rd Int. Symp. on Ballistics. Tarragona, 16-20 April, 2007, p. 1313-1320. J. Buchar, S. Rolc, and G. Cozzani, “Numerical simulation of the penetration of 7.62 AP projectiles into ceramic armours,” 23rd Int. Symp. on Ballistics. Tarragona, 16-20 April, 2007, p. 1313-1320.
21.
go back to reference T. Børvik, S. Dey, and Clausen A. H. “Perforation resistance of five different high-strength steel plates subjected to small arms projectiles,” Int. J. Impact Eng., 36, No. 7, 948-964 (2009). T. Børvik, S. Dey, and Clausen A. H. “Perforation resistance of five different high-strength steel plates subjected to small arms projectiles,” Int. J. Impact Eng., 36, No. 7, 948-964 (2009).
22.
go back to reference N. Kiliç and B. Ekici, “Ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition,” Materials and Design, 44, 35-48 (2013).CrossRef N. Kiliç and B. Ekici, “Ballistic resistance of high hardness armor steels against 7.62 mm armor piercing ammunition,” Materials and Design, 44, 35-48 (2013).CrossRef
23.
go back to reference C. G. Fountzoulas, B. A. Cheeseman, P. G. Dehmer, and J. M Sands, “A computational study of laminate transparent armor impacted by FSP”, 23rd Int. Symp. on Ballistics. Tarragona, 16-20 April, 2007. p. 873-881. C. G. Fountzoulas, B. A. Cheeseman, P. G. Dehmer, and J. M Sands, “A computational study of laminate transparent armor impacted by FSP”, 23rd Int. Symp. on Ballistics. Tarragona, 16-20 April, 2007. p. 873-881.
24.
go back to reference D. Littlewood and T. Vogler, “Modeling dynamic fracture with peridynamics, finite element modeling and contact,” 11th US National Congress on Computational Mechanics. Minneapollis, 25-28 July, 2011. D. Littlewood and T. Vogler, “Modeling dynamic fracture with peridynamics, finite element modeling and contact,” 11th US National Congress on Computational Mechanics. Minneapollis, 25-28 July, 2011.
25.
go back to reference J. Lopez-Puente, A. Arias, R. Zaera, an C. Navarro, “The effect of thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study,” Int. J. Impact Eng., 32, No. 1-4, 321-336 (2005). J. Lopez-Puente, A. Arias, R. Zaera, an C. Navarro, “The effect of thickness of the adhesive layer on the ballistic limit of ceramic/metal armours. An experimental and numerical study,” Int. J. Impact Eng., 32, No. 1-4, 321-336 (2005).
26.
go back to reference C. J. Roberson, “Ceramic materials and their use in lightweight armour systems,” In: Proc. of Lightweight Armour Symp., Cranfield, 28-30 June, 1995. C. J. Roberson, “Ceramic materials and their use in lightweight armour systems,” In: Proc. of Lightweight Armour Symp., Cranfield, 28-30 June, 1995.
Metadata
Title
Optimization of the Structure of a Ceramic-Aluminum Alloy Composite Subjected to the Impact of Hard Steel Projectiles
Authors
A. Morka
P. Kędzierski
P. Muzolf
Publication date
09-07-2016
Publisher
Springer US
Published in
Mechanics of Composite Materials / Issue 3/2016
Print ISSN: 0191-5665
Electronic ISSN: 1573-8922
DOI
https://doi.org/10.1007/s11029-016-9586-z

Other articles of this Issue 3/2016

Mechanics of Composite Materials 3/2016 Go to the issue

Premium Partners