Skip to main content
Top
Published in: Journal of Materials Science 19/2018

09-07-2018 | Biomaterials

Optimizing the alginate coating layer of doxorubicin-loaded iron oxide nanoparticles for cancer hyperthermia and chemotherapy

Authors: Thi Thu Huong Le, Thuc Quang Bui, Thi Minh Thi Ha, Mai Huong Le, Hong Nam Pham, Phuong Thu Ha

Published in: Journal of Materials Science | Issue 19/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chemotherapy in cancer treatment usually leads to serious side effects on patients due to the unselectiveness and high toxicity on normal cells of cancer drugs. Loading cancer drugs into nano-platforms could be an alternative approach to effectively deliver drugs to tumors and reduce toxic exposure on healthy cells. In this work, we synthesized drug delivery nano-systems based on Fe3O4 nanoparticles (obtained from co-precipitation reaction) which could provide targeting of drugs to the tumor sites by an external magnetic field. Also, the magnetic nanoparticles (MNPs) could generate heat to kill cancer cells at a certain temperature range. The systems were designed for loading anticancer agent doxorubicin by using alginate-coated iron oxide MNPs. It was found that the loading was achieved by complex formation of doxorubicin and the alginate layer. Various concentrations of alginate solutions produced different sizes as well as drug loading capacities of the nanoparticles. The highest loading content of 18.96% achieved at the alginate concentration of 4 mg ml−1, corresponding to the mass ratio of alginate to Fe3O4 of around 1:2. The magnetic properties, especially the inductive heating effect of the nanoparticles, along with the impact of the systems on tumor cells were investigated. The results proved that the nanoparticles can serve as a good drug delivery system, in terms of both effective hyperthermia and chemotherapy.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Nasongkla N, Bey E, Ren J et al (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:3–6CrossRef Nasongkla N, Bey E, Ren J et al (2006) Multifunctional polymeric micelles as cancer-targeted, MRI-ultrasensitive drug delivery systems. Nano Lett 6:3–6CrossRef
2.
go back to reference Hong G, Yuan R, Liang B et al (2008) Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs. Biomed Microdevice 10:693–700CrossRef Hong G, Yuan R, Liang B et al (2008) Folate-functionalized polymeric micelle as hepatic carcinoma-targeted, MRI-ultrasensitive delivery system of antitumor drugs. Biomed Microdevice 10:693–700CrossRef
3.
go back to reference Yu MK, Jeong YY, Park J, et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo**. Evolution:1–5 Yu MK, Jeong YY, Park J, et al (2008) Drug-loaded superparamagnetic iron oxide nanoparticles for combined cancer imaging and therapy in vivo**. Evolution:1–5
4.
go back to reference Ma HL, Xu YF, Qi XR et al (2008) Superparamagnetic iron oxide nanoparticles stabilized by alginate: pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int J Pharm 354:217–226CrossRef Ma HL, Xu YF, Qi XR et al (2008) Superparamagnetic iron oxide nanoparticles stabilized by alginate: pharmacokinetics, tissue distribution, and applications in detecting liver cancers. Int J Pharm 354:217–226CrossRef
5.
go back to reference Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265CrossRef Sun C, Lee JSH, Zhang M (2008) Magnetic nanoparticles in MR imaging and drug delivery. Adv Drug Deliv Rev 60:1252–1265CrossRef
6.
go back to reference Lin MM, Kim DK, El Haj AJ, Dobson J (2008) Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans Nanobiosci 7:298–305CrossRef Lin MM, Kim DK, El Haj AJ, Dobson J (2008) Development of superparamagnetic iron oxide nanoparticles (SPIONS) for translation to clinical applications. IEEE Trans Nanobiosci 7:298–305CrossRef
7.
go back to reference Mahmoudi M, Simchi A, Imani M et al (2008) Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Phys Chem B 112:14470–14481CrossRef Mahmoudi M, Simchi A, Imani M et al (2008) Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J Phys Chem B 112:14470–14481CrossRef
8.
go back to reference Shete PB, Patil RM, Tiwale BM, Pawar SH (2015) Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J Magn Magn Mater 377:406–410CrossRef Shete PB, Patil RM, Tiwale BM, Pawar SH (2015) Water dispersible oleic acid-coated Fe3O4 nanoparticles for biomedical applications. J Magn Magn Mater 377:406–410CrossRef
9.
go back to reference Jia Y, Yuan M, Yuan H et al (2012) Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery. Int J Nanomed 7:1697–1708CrossRef Jia Y, Yuan M, Yuan H et al (2012) Co-encapsulation of magnetic Fe3O4 nanoparticles and doxorubicin into biodegradable PLGA nanocarriers for intratumoral drug delivery. Int J Nanomed 7:1697–1708CrossRef
10.
go back to reference Maeng JH, Lee D-H, Jung KH et al (2010) Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31:4995–5006CrossRef Maeng JH, Lee D-H, Jung KH et al (2010) Multifunctional doxorubicin loaded superparamagnetic iron oxide nanoparticles for chemotherapy and magnetic resonance imaging in liver cancer. Biomaterials 31:4995–5006CrossRef
11.
go back to reference Unsoy G, Khodadust R, Yalcin S et al (2014) Synthesis of doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci 62:243–250CrossRef Unsoy G, Khodadust R, Yalcin S et al (2014) Synthesis of doxorubicin loaded magnetic chitosan nanoparticles for pH responsive targeted drug delivery. Eur J Pharm Sci 62:243–250CrossRef
12.
go back to reference Insausti M, Salado J, Castellanos I et al (2012) Tailoring biocompatible Fe3O4 nanoparticles for applications to magnetic hyperthermia. Proc SPIE 8232:823210/1–823210/8 Insausti M, Salado J, Castellanos I et al (2012) Tailoring biocompatible Fe3O4 nanoparticles for applications to magnetic hyperthermia. Proc SPIE 8232:823210/1–823210/8
13.
go back to reference Kikuchi T, Kasuya R, Endo S, Nakamura A (2010) Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia. J Magn Magn Mater 323:1216–1222CrossRef Kikuchi T, Kasuya R, Endo S, Nakamura A (2010) Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia. J Magn Magn Mater 323:1216–1222CrossRef
14.
go back to reference Ang KL, Venkatraman S, Ramanujan RV (2007) Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy. Mater Sci Eng C 27:347–351CrossRef Ang KL, Venkatraman S, Ramanujan RV (2007) Magnetic PNIPA hydrogels for hyperthermia applications in cancer therapy. Mater Sci Eng C 27:347–351CrossRef
15.
go back to reference Longhi A, Ferrari S, Bacci G, Specchia S (2007) Long-term follow-up of patients with doxorubicin-induced cardiac toxicity after chemotherapy for osteosarcoma. Anticancer Drugs 18:737–744CrossRef Longhi A, Ferrari S, Bacci G, Specchia S (2007) Long-term follow-up of patients with doxorubicin-induced cardiac toxicity after chemotherapy for osteosarcoma. Anticancer Drugs 18:737–744CrossRef
16.
go back to reference Ahn D, Lee J, Park S et al (2014) Doxorubicin-loaded alginate-g-poly(N-isopropylacrylamide) micelles for cancer imaging and therapy. ACS Appl Mater Interfaces 6(24):22069–22077CrossRef Ahn D, Lee J, Park S et al (2014) Doxorubicin-loaded alginate-g-poly(N-isopropylacrylamide) micelles for cancer imaging and therapy. ACS Appl Mater Interfaces 6(24):22069–22077CrossRef
17.
go back to reference Cheng Y, Yu S, Zhen X et al (2012) Alginic acid nanoparticles prepared through counterion complexation method as a drug delivery system. ACS Appl Mater Interfaces 4:5325–5332CrossRef Cheng Y, Yu S, Zhen X et al (2012) Alginic acid nanoparticles prepared through counterion complexation method as a drug delivery system. ACS Appl Mater Interfaces 4:5325–5332CrossRef
18.
go back to reference Javid A, Ahmadian S, Saboury AA et al (2013) Chitosan-coated superparamagnetic iron oxide nanoparticles for doxorubicin delivery: synthesis and anticancer effect against human ovarian cancer cells. Chem Biol Drug Des 82:296–306CrossRef Javid A, Ahmadian S, Saboury AA et al (2013) Chitosan-coated superparamagnetic iron oxide nanoparticles for doxorubicin delivery: synthesis and anticancer effect against human ovarian cancer cells. Chem Biol Drug Des 82:296–306CrossRef
19.
go back to reference Baghbani F, Moztarzadeh F, Mohandesi JA et al (2016) Formulation design, preparation and characterization of multifunctional alginate stabilized nanodroplets. Int J Biol Macromol 89:550–558CrossRef Baghbani F, Moztarzadeh F, Mohandesi JA et al (2016) Formulation design, preparation and characterization of multifunctional alginate stabilized nanodroplets. Int J Biol Macromol 89:550–558CrossRef
20.
go back to reference Sengupta IS, Shah SH, Shah N (2015) A review on: alginate forming in situ gel for treating peptic ulcers and reflux disorders. J Pharm Sci Biosci Res 5:171–179 Sengupta IS, Shah SH, Shah N (2015) A review on: alginate forming in situ gel for treating peptic ulcers and reflux disorders. J Pharm Sci Biosci Res 5:171–179
21.
go back to reference Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci (Oxford) 37:106–126CrossRef Lee KY, Mooney DJ (2012) Alginate: properties and biomedical applications. Prog Polym Sci (Oxford) 37:106–126CrossRef
22.
go back to reference Nguyen HN, Hoang TMN, Mai TTT et al (2015) Enhanced cellular uptake and cytotoxicity of folate decorated doxorubicin loaded PLA–TPGS nanoparticles. Adv Nat Sci Nanosci Nanotechnol 6:25005CrossRef Nguyen HN, Hoang TMN, Mai TTT et al (2015) Enhanced cellular uptake and cytotoxicity of folate decorated doxorubicin loaded PLA–TPGS nanoparticles. Adv Nat Sci Nanosci Nanotechnol 6:25005CrossRef
23.
go back to reference Nguyen HN, Thi HHT, Le Quang D et al (2012) Apoptosis induced by paclitaxel-loaded copolymer PLA–TPGS in Hep-G2 cells. Adv Nat Sci Nanosci Nanotechnol 3:45005CrossRef Nguyen HN, Thi HHT, Le Quang D et al (2012) Apoptosis induced by paclitaxel-loaded copolymer PLA–TPGS in Hep-G2 cells. Adv Nat Sci Nanosci Nanotechnol 3:45005CrossRef
24.
go back to reference Phan QT, Le MH, Le TTH et al (2016) Characteristics and cytotoxicity of folate-modified curcumin-loaded PLA–PEG micellar nano systems with various PLA:PEG ratios. Int J Pharm 507:32–40CrossRef Phan QT, Le MH, Le TTH et al (2016) Characteristics and cytotoxicity of folate-modified curcumin-loaded PLA–PEG micellar nano systems with various PLA:PEG ratios. Int J Pharm 507:32–40CrossRef
25.
go back to reference Devkota J, Mai TTT, Stojak K et al (2014) Synthesis, inductive heating, and magnetoimpedance-based detection of multifunctional Fe3O4 nanoconjugates. Sensors Actuators B Chem 190:715–722CrossRef Devkota J, Mai TTT, Stojak K et al (2014) Synthesis, inductive heating, and magnetoimpedance-based detection of multifunctional Fe3O4 nanoconjugates. Sensors Actuators B Chem 190:715–722CrossRef
26.
go back to reference Huong LTT, Nam NH, Doan DH et al (2016) Folate attached, curcumin loaded Fe3O4 nanoparticles: a novel multifunctional drug delivery system for cancer treatment. Mater Chem Phys 172:98–104CrossRef Huong LTT, Nam NH, Doan DH et al (2016) Folate attached, curcumin loaded Fe3O4 nanoparticles: a novel multifunctional drug delivery system for cancer treatment. Mater Chem Phys 172:98–104CrossRef
27.
go back to reference Thu HP, Huong LTT, Nhung HTM et al (2011) Fe3O4/o-carboxylmethyl chitosan/curcumin-based nanodrug system for chemotherapy and fluorescence imaging in HT29 cancer cell line. Chem Lett 11:1–4 Thu HP, Huong LTT, Nhung HTM et al (2011) Fe3O4/o-carboxylmethyl chitosan/curcumin-based nanodrug system for chemotherapy and fluorescence imaging in HT29 cancer cell line. Chem Lett 11:1–4
28.
go back to reference Nguyen XP, Tran DL, Ha PT et al (2012) Iron oxide-based conjugates for cancer theragnostics. Adv Nat Sci Nanosci Nanotechnol 3:33001CrossRef Nguyen XP, Tran DL, Ha PT et al (2012) Iron oxide-based conjugates for cancer theragnostics. Adv Nat Sci Nanosci Nanotechnol 3:33001CrossRef
29.
go back to reference Kallumadil M, Tada M, Nakagawa T et al (2009) Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 321:1509–1513CrossRef Kallumadil M, Tada M, Nakagawa T et al (2009) Suitability of commercial colloids for magnetic hyperthermia. J Magn Magn Mater 321:1509–1513CrossRef
30.
go back to reference Salas G, Veintemillas-Verdaguer S, Morales MDP (2013) Relationship between physico-chemical properties of magnetic fluids and their heating capacity. Int J Hyperth Off J Eur Soc Hyperth Oncol N Am Hyperth Group 29:768–776CrossRef Salas G, Veintemillas-Verdaguer S, Morales MDP (2013) Relationship between physico-chemical properties of magnetic fluids and their heating capacity. Int J Hyperth Off J Eur Soc Hyperth Oncol N Am Hyperth Group 29:768–776CrossRef
31.
go back to reference Tran LD, Hoang NMT, Mai TT et al (2010) Nanosized magnetofluorescent Fe3O4-curcumin conjugate for multimodal monitoring and drug targeting. Colloids Surf A 371:104–112CrossRef Tran LD, Hoang NMT, Mai TT et al (2010) Nanosized magnetofluorescent Fe3O4-curcumin conjugate for multimodal monitoring and drug targeting. Colloids Surf A 371:104–112CrossRef
32.
go back to reference Wang G, Su X, Yang S et al (2012) The double-effect mechanism between Fe3O4 nanoparticles and MSA-capped CdTe QDs. J Lumin 132:2505–2511CrossRef Wang G, Su X, Yang S et al (2012) The double-effect mechanism between Fe3O4 nanoparticles and MSA-capped CdTe QDs. J Lumin 132:2505–2511CrossRef
33.
go back to reference Liao S-H, Liu C-H, Bishnu Prasad B et al (2015) Functionalized magnetic iron oxide/alginate core–shell nanoparticles for targeting hyperthermia. Int J Nanomed 10:3315–3328CrossRef Liao S-H, Liu C-H, Bishnu Prasad B et al (2015) Functionalized magnetic iron oxide/alginate core–shell nanoparticles for targeting hyperthermia. Int J Nanomed 10:3315–3328CrossRef
34.
go back to reference Araújo-Neto RP, Silva-Freitas EL, Carvalho JF et al (2014) Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. J Magn Magn Mater 364:72–79CrossRef Araújo-Neto RP, Silva-Freitas EL, Carvalho JF et al (2014) Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. J Magn Magn Mater 364:72–79CrossRef
35.
go back to reference Vasconcelos IB, Da Silva TG, Militão GCG et al (2012) Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Adv 2:9437–9442CrossRef Vasconcelos IB, Da Silva TG, Militão GCG et al (2012) Cytotoxicity and slow release of the anti-cancer drug doxorubicin from ZIF-8. RSC Adv 2:9437–9442CrossRef
36.
go back to reference Kayal S, Ramanujan RV (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C 30:484–490CrossRef Kayal S, Ramanujan RV (2010) Doxorubicin loaded PVA coated iron oxide nanoparticles for targeted drug delivery. Mater Sci Eng C 30:484–490CrossRef
37.
go back to reference Nigam S, Barick KC, Bahadur D (2011) Development of citrate-stabilized Fe3O4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications. J Magn Magn Mater 323:237–243CrossRef Nigam S, Barick KC, Bahadur D (2011) Development of citrate-stabilized Fe3O4 nanoparticles: conjugation and release of doxorubicin for therapeutic applications. J Magn Magn Mater 323:237–243CrossRef
38.
go back to reference Hervault A, Dunn AE, Lim M et al (2016) Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale 8:21–24CrossRef Hervault A, Dunn AE, Lim M et al (2016) Doxorubicin loaded dual pH- and thermo-responsive magnetic nanocarrier for combined magnetic hyperthermia and targeted controlled drug delivery applications. Nanoscale 8:21–24CrossRef
39.
go back to reference Fischer MJE (2010) Amine coupling through EDC/NHS: a practical approach methods. Mol Biol 627:55–73 Fischer MJE (2010) Amine coupling through EDC/NHS: a practical approach methods. Mol Biol 627:55–73
40.
go back to reference Neuberger T, Schöpf B, Hofmann H et al (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496CrossRef Neuberger T, Schöpf B, Hofmann H et al (2005) Superparamagnetic nanoparticles for biomedical applications: possibilities and limitations of a new drug delivery system. J Magn Magn Mater 293:483–496CrossRef
41.
go back to reference Gupta A, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRef Gupta A, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021CrossRef
42.
go back to reference Hałupka-Bryl M, Bednarowicz M, Dobosz B et al (2015) Doxorubicin loaded PEG-b-poly(4-vinylbenzylphosphonate) coated magnetic iron oxide nanoparticles for targeted drug delivery. J Magn Magn Mater 384:320–327CrossRef Hałupka-Bryl M, Bednarowicz M, Dobosz B et al (2015) Doxorubicin loaded PEG-b-poly(4-vinylbenzylphosphonate) coated magnetic iron oxide nanoparticles for targeted drug delivery. J Magn Magn Mater 384:320–327CrossRef
43.
go back to reference Marín T, Montoya P, Arnache O, Calderón J (2016) Influence of surface treatment on magnetic properties of Fe3O4 nanoparticles synthesized by electrochemical method. J Phys Chem B 120:6634–6645CrossRef Marín T, Montoya P, Arnache O, Calderón J (2016) Influence of surface treatment on magnetic properties of Fe3O4 nanoparticles synthesized by electrochemical method. J Phys Chem B 120:6634–6645CrossRef
44.
go back to reference Khalkhali M, Sadighian S, Rostamizadeh K et al (2015) Synthesis and characterization of dextran coated magnetite nanoparticles for simultaneous diagnostics and therapy. Bioimpacts 5:141–150CrossRef Khalkhali M, Sadighian S, Rostamizadeh K et al (2015) Synthesis and characterization of dextran coated magnetite nanoparticles for simultaneous diagnostics and therapy. Bioimpacts 5:141–150CrossRef
45.
go back to reference Aliahmad M, Nasiri Moghaddam N (2013) Synthesis of maghemite (γ-Fe2O3) nanoparticles by thermal-decomposition of magnetite (Fe3O4) nanoparticles. Mater Sci Pol 31:264–268CrossRef Aliahmad M, Nasiri Moghaddam N (2013) Synthesis of maghemite (γ-Fe2O3) nanoparticles by thermal-decomposition of magnetite (Fe3O4) nanoparticles. Mater Sci Pol 31:264–268CrossRef
46.
go back to reference Pereira C, Pereira AM, Fernandes C et al (2012) Superparamagnetic MFe2O4 (M = Fe Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24:1496–1504CrossRef Pereira C, Pereira AM, Fernandes C et al (2012) Superparamagnetic MFe2O4 (M = Fe Co, Mn) nanoparticles: tuning the particle size and magnetic properties through a novel one-step coprecipitation route. Chem Mater 24:1496–1504CrossRef
47.
go back to reference Cao S-W, Zhu Y-J, Chang J (2008) Fe3O4 polyhedral nanoparticles with a high magnetization synthesized in mixed solvent ethylene glycol–water system. New J Chem 32:1526–1530CrossRef Cao S-W, Zhu Y-J, Chang J (2008) Fe3O4 polyhedral nanoparticles with a high magnetization synthesized in mixed solvent ethylene glycol–water system. New J Chem 32:1526–1530CrossRef
48.
go back to reference Akbarzadeh A, Mikaeili H, Zarghami N et al (2012) Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int J Nanomed 7:511–526 Akbarzadeh A, Mikaeili H, Zarghami N et al (2012) Preparation and in vitro evaluation of doxorubicin-loaded Fe3O4 magnetic nanoparticles modified with biocompatible copolymers. Int J Nanomed 7:511–526
49.
go back to reference Chen F-H, Zhang L-M, Chen Q-T et al (2010) Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell. Chem Commun (Camb) 46:8633–8635CrossRef Chen F-H, Zhang L-M, Chen Q-T et al (2010) Synthesis of a novel magnetic drug delivery system composed of doxorubicin-conjugated Fe3O4 nanoparticle cores and a PEG-functionalized porous silica shell. Chem Commun (Camb) 46:8633–8635CrossRef
50.
go back to reference Lima E, De Biasi E, Mansilla MV et al (2013) Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field. J Phys D Appl Phys 46:045002CrossRef Lima E, De Biasi E, Mansilla MV et al (2013) Heat generation in agglomerated ferrite nanoparticles in an alternating magnetic field. J Phys D Appl Phys 46:045002CrossRef
51.
go back to reference Chin SF, Iyer KS, Saunders M et al (2009) Encapsulation and sustained release of curcumin using superparamagnetic silica reservoirs. Chem Eur J 15:5661–5665CrossRef Chin SF, Iyer KS, Saunders M et al (2009) Encapsulation and sustained release of curcumin using superparamagnetic silica reservoirs. Chem Eur J 15:5661–5665CrossRef
52.
go back to reference Jordan A, Scholz R, Wust P et al (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419CrossRef Jordan A, Scholz R, Wust P et al (1999) Magnetic fluid hyperthermia (MFH): cancer treatment with AC magnetic field induced excitation of biocompatible superparamagnetic nanoparticles. J Magn Magn Mater 201:413–419CrossRef
53.
go back to reference Johannsen M, Gneveckow U, Thiesen B et al (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:1653–1661CrossRef Johannsen M, Gneveckow U, Thiesen B et al (2007) Thermotherapy of prostate cancer using magnetic nanoparticles: feasibility, imaging, and three-dimensional temperature distribution. Eur Urol 52:1653–1661CrossRef
54.
go back to reference Van Landeghem FKH, Maier-hauff K, Jordan A et al (2009) Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30:52–57CrossRef Van Landeghem FKH, Maier-hauff K, Jordan A et al (2009) Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials 30:52–57CrossRef
55.
go back to reference Maier-hauff K, Ulrich F, Nestler D et al (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324CrossRef Maier-hauff K, Ulrich F, Nestler D et al (2011) Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol 103:317–324CrossRef
56.
go back to reference Liu XL, Fan HM, Yi JB et al (2012) Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J Mater Chem 22:8235–8244CrossRef Liu XL, Fan HM, Yi JB et al (2012) Optimization of surface coating on Fe3O4 nanoparticles for high performance magnetic hyperthermia agents. J Mater Chem 22:8235–8244CrossRef
57.
go back to reference De La Presa P, Luengo Y, Multigner M et al (2012) Study of heating efficiency as a function of concentration, size, and applied field in g-Fe2O3 nanoparticles. J Phys Chem C 116:25602–25610CrossRef De La Presa P, Luengo Y, Multigner M et al (2012) Study of heating efficiency as a function of concentration, size, and applied field in g-Fe2O3 nanoparticles. J Phys Chem C 116:25602–25610CrossRef
58.
go back to reference Serantes D, Simeonidis K, Angelakeris M et al (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934CrossRef Serantes D, Simeonidis K, Angelakeris M et al (2014) Multiplying magnetic hyperthermia response by nanoparticle assembling. J Phys Chem C 118:5927–5934CrossRef
59.
go back to reference Nemati Z, Alonso J, Rodrigo I et al (2018) Improving the heating efficiency of iron oxide nanoparticles by tuning their shape and size. J Phys Chem C 122:2367–2381CrossRef Nemati Z, Alonso J, Rodrigo I et al (2018) Improving the heating efficiency of iron oxide nanoparticles by tuning their shape and size. J Phys Chem C 122:2367–2381CrossRef
60.
go back to reference Piñeiro-Redondo Y, Bañobre-López M, Pardiñas-Blanco I et al (2011) The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res Lett 6:383CrossRef Piñeiro-Redondo Y, Bañobre-López M, Pardiñas-Blanco I et al (2011) The influence of colloidal parameters on the specific power absorption of PAA-coated magnetite nanoparticles. Nanoscale Res Lett 6:383CrossRef
61.
go back to reference Engineer C, Parikh J, Raval A (2011) Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater Artif Organs 25:79–85 Engineer C, Parikh J, Raval A (2011) Review on hydrolytic degradation behavior of biodegradable polymers from controlled drug delivery system. Trends Biomater Artif Organs 25:79–85
62.
go back to reference Yang F, Zhang X, Song L et al (2015) Controlled drug release and hydrolysis mechanism of polymer-magnetic nanoparticle composite. ACS Appl Mater Interfaces 7:9410–9419CrossRef Yang F, Zhang X, Song L et al (2015) Controlled drug release and hydrolysis mechanism of polymer-magnetic nanoparticle composite. ACS Appl Mater Interfaces 7:9410–9419CrossRef
63.
go back to reference Margaritis A, Manocha B (2010) Controlled release of doxorubicin from doxorubicin/polyglutamic acid ionic complex. J Nanomater 2010:780171 Margaritis A, Manocha B (2010) Controlled release of doxorubicin from doxorubicin/polyglutamic acid ionic complex. J Nanomater 2010:780171
64.
go back to reference Estrella V, Chen T, Lloyd M et al (2013) Acidity generated by the tumor microenvironment drives local invasion. Can Res 73:1524–1535CrossRef Estrella V, Chen T, Lloyd M et al (2013) Acidity generated by the tumor microenvironment drives local invasion. Can Res 73:1524–1535CrossRef
65.
go back to reference Javid A, Ahmadian S, Saboury A, Rezaei-zarchi S (2011) Anticancer effect of doxorubicin loaded heparin based super-paramagnetic iron oxide nanoparticles against the human ovarian cancer cells. Int J Biomed Biol Eng 5:141–145 Javid A, Ahmadian S, Saboury A, Rezaei-zarchi S (2011) Anticancer effect of doxorubicin loaded heparin based super-paramagnetic iron oxide nanoparticles against the human ovarian cancer cells. Int J Biomed Biol Eng 5:141–145
66.
go back to reference Prabha G, Raj V (2017) Sodium alginate–polyvinyl alcohol–bovin serum albumin coated Fe3O4nanoparticles as anticancer drug delivery vehicle: doxorubicin loading and in vitro release study and cytotoxicity to HepG2 and L02 cells. Mater Sci Eng C 79:410–422CrossRef Prabha G, Raj V (2017) Sodium alginate–polyvinyl alcohol–bovin serum albumin coated Fe3O4nanoparticles as anticancer drug delivery vehicle: doxorubicin loading and in vitro release study and cytotoxicity to HepG2 and L02 cells. Mater Sci Eng C 79:410–422CrossRef
67.
go back to reference Ghanbari M, Asadi A (2016) Study of the cytotoxicity effect of doxorubicin-loaded/folic acid-targeted super paramagnetic iron oxide nanoparticles on AGS cancer cell line. J Nanomed Nanotechnol 7:368CrossRef Ghanbari M, Asadi A (2016) Study of the cytotoxicity effect of doxorubicin-loaded/folic acid-targeted super paramagnetic iron oxide nanoparticles on AGS cancer cell line. J Nanomed Nanotechnol 7:368CrossRef
Metadata
Title
Optimizing the alginate coating layer of doxorubicin-loaded iron oxide nanoparticles for cancer hyperthermia and chemotherapy
Authors
Thi Thu Huong Le
Thuc Quang Bui
Thi Minh Thi Ha
Mai Huong Le
Hong Nam Pham
Phuong Thu Ha
Publication date
09-07-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 19/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2574-z

Other articles of this Issue 19/2018

Journal of Materials Science 19/2018 Go to the issue

Mechanochemical Synthesis

Preface

Premium Partners