Skip to main content
Top
Published in: Journal of Materials Science 19/2018

03-07-2018 | Biomaterials

A comprehensive study and comparison of four types of zwitterionic hydrogels

Authors: Weiqiang Zhao, Yingnan Zhu, Jiamin Zhang, Tong Xu, Qingsi Li, Hongshuang Guo, Jinwei Zhang, Cunguo Lin, Lei Zhang

Published in: Journal of Materials Science | Issue 19/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Zwitterionic materials have been attracting significant attentions due to their excellent non-fouling and biocompatible properties and thus have been widely used in many biomedical applications. However, differences among different types of zwitterionic materials have rarely been investigated and compared. In this work, four types of zwitterionic monomers were systematically studied and compared by testing the properties of the hydrogels. Their hydration, diffusion coefficient of water and mechanical properties were evaluated and analyzed. It was found that poly(carboxybetaine methacrylate) (PCBMA) hydrogel possessed the strongest compressive modulus, while poly(carboxybetaine acrylamide) (PCBAA) hydrogel showed the highest diffusion coefficient of water and highest hydration of water. Compared with other hydrogels, the mesh size of poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC) hydrogel was the largest. Furthermore, poly(sulfobetaine methacrylate) (PSBMA) hydrogel with disulfide crosslinker degraded faster than the others. Findings in this work provided insights and guidance for the selection of different zwitterionic polymers to suit different applications.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Zhu YN, Zhang JM, Yang J, Pan C, Xu T, Zhang L (2016) Zwitterionic hydrogels promote skin wound healing. J Mater Chem B 4:5105–5111CrossRef Zhu YN, Zhang JM, Yang J, Pan C, Xu T, Zhang L (2016) Zwitterionic hydrogels promote skin wound healing. J Mater Chem B 4:5105–5111CrossRef
2.
go back to reference Zhu YN, Zhang JM, Song JY et al (2017) One-step synthesis of an antibacterial and pro-healing wound dressing that can treat wound infections. J Mater Chem B 5:8451–8458CrossRef Zhu YN, Zhang JM, Song JY et al (2017) One-step synthesis of an antibacterial and pro-healing wound dressing that can treat wound infections. J Mater Chem B 5:8451–8458CrossRef
3.
go back to reference Yang W, Xue H, Carr LR, Wang J, Jiang SY (2011) Zwitterionic poly(carboxybetaine) hydrogels for glucose biosensors in complex media. Biosens Bioelectron 26:2454–2459CrossRef Yang W, Xue H, Carr LR, Wang J, Jiang SY (2011) Zwitterionic poly(carboxybetaine) hydrogels for glucose biosensors in complex media. Biosens Bioelectron 26:2454–2459CrossRef
4.
go back to reference Sun F, Hung H-C, Sinclair A et al (2016) Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma. Nat Commun 7:13437–13445CrossRef Sun F, Hung H-C, Sinclair A et al (2016) Hierarchical zwitterionic modification of a SERS substrate enables real-time drug monitoring in blood plasma. Nat Commun 7:13437–13445CrossRef
5.
go back to reference Zhang L, Sinclair A, Cao ZQ et al (2013) Hydrolytic cationic ester microparticles for highly efficient DNA vaccine delivery. Small 9:3439–3444CrossRef Zhang L, Sinclair A, Cao ZQ et al (2013) Hydrolytic cationic ester microparticles for highly efficient DNA vaccine delivery. Small 9:3439–3444CrossRef
6.
go back to reference Cai NN, Li QS, Zhang JM et al (2017) Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent. J Colloid Interf Sci 503:168–177CrossRef Cai NN, Li QS, Zhang JM et al (2017) Antifouling zwitterionic hydrogel coating improves hemocompatibility of activated carbon hemoadsorbent. J Colloid Interf Sci 503:168–177CrossRef
7.
go back to reference Bodkhe RB, Stafslien SJ, Daniels J et al (2015) Zwitterionic siloxane-polyurethane fouling-release coatings. Prog Org Coat 78:369–380CrossRef Bodkhe RB, Stafslien SJ, Daniels J et al (2015) Zwitterionic siloxane-polyurethane fouling-release coatings. Prog Org Coat 78:369–380CrossRef
8.
go back to reference Zhang Z, Chao T, Chen SF, Jiang SY (2006) Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 22:10072–10077CrossRef Zhang Z, Chao T, Chen SF, Jiang SY (2006) Superlow fouling sulfobetaine and carboxybetaine polymers on glass slides. Langmuir 22:10072–10077CrossRef
9.
go back to reference Vaisocherova H, Yang W, Zhang Z et al (2008) Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal Chem 80:7894–7901CrossRef Vaisocherova H, Yang W, Zhang Z et al (2008) Ultralow fouling and functionalizable surface chemistry based on a zwitterionic polymer enabling sensitive and specific protein detection in undiluted blood plasma. Anal Chem 80:7894–7901CrossRef
10.
go back to reference Cheng G, Zhang Z, Chen SF, Bryers JD, Jiang SY (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28:4192–4199CrossRef Cheng G, Zhang Z, Chen SF, Bryers JD, Jiang SY (2007) Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces. Biomaterials 28:4192–4199CrossRef
11.
go back to reference Cheng G, Li GZ, Xue H, Chen SF, Bryers JD, Jiang SY (2009) Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials 30:5234–5240CrossRef Cheng G, Li GZ, Xue H, Chen SF, Bryers JD, Jiang SY (2009) Zwitterionic carboxybetaine polymer surfaces and their resistance to long-term biofilm formation. Biomaterials 30:5234–5240CrossRef
12.
go back to reference Zhang P, Sun F, Tsao C et al (2015) Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. Proc Natl Acad Sci USA 112:12046–12051CrossRef Zhang P, Sun F, Tsao C et al (2015) Zwitterionic gel encapsulation promotes protein stability, enhances pharmacokinetics, and reduces immunogenicity. Proc Natl Acad Sci USA 112:12046–12051CrossRef
13.
go back to reference Li BW, Yuan ZF, Zhang P et al (2018) Zwitterionic nanocages overcome the efficacy loss of biologic drugs. Adv Mater 30:1705728–1705735CrossRef Li BW, Yuan ZF, Zhang P et al (2018) Zwitterionic nanocages overcome the efficacy loss of biologic drugs. Adv Mater 30:1705728–1705735CrossRef
14.
go back to reference Zhang L, Cao ZQ, Bai T et al (2013) Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol 31:553–556CrossRef Zhang L, Cao ZQ, Bai T et al (2013) Zwitterionic hydrogels implanted in mice resist the foreign-body reaction. Nat Biotechnol 31:553–556CrossRef
15.
go back to reference Jiang SY, Cao ZQ (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932CrossRef Jiang SY, Cao ZQ (2010) Ultralow-fouling, functionalizable, and hydrolyzable zwitterionic materials and their derivatives for biological applications. Adv Mater 22:920–932CrossRef
16.
go back to reference Cao ZQ, Jiang SY (2012) Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today 7:404–413CrossRef Cao ZQ, Jiang SY (2012) Super-hydrophilic zwitterionic poly(carboxybetaine) and amphiphilic non-ionic poly(ethylene glycol) for stealth nanoparticles. Nano Today 7:404–413CrossRef
17.
go back to reference Shao Q, Jiang SY (2015) Molecular understanding and design of zwitterionic materials. Adv Mater 27:15–26CrossRef Shao Q, Jiang SY (2015) Molecular understanding and design of zwitterionic materials. Adv Mater 27:15–26CrossRef
18.
go back to reference Xing C-M, Meng F-N, Quan M, Ding K, Dang Y, Gong Y-K (2017) Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings. Acta Biomater 59:129–138CrossRef Xing C-M, Meng F-N, Quan M, Ding K, Dang Y, Gong Y-K (2017) Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings. Acta Biomater 59:129–138CrossRef
19.
go back to reference Chang Y, Chen SF, Yu QM, Zhang Z, Bernards M, Jiang SY (2007) Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance. Biomacromol 8:122–127CrossRef Chang Y, Chen SF, Yu QM, Zhang Z, Bernards M, Jiang SY (2007) Development of biocompatible interpenetrating polymer networks containing a sulfobetaine-based polymer and a segmented polyurethane for protein resistance. Biomacromol 8:122–127CrossRef
20.
go back to reference Chang Y, Chang W-J, Shih Y-J, Wei T-C, Hsiue G-H (2011) Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-Induced surface copolymerization. ACS Appl Mater Inter 3:1228–1237CrossRef Chang Y, Chang W-J, Shih Y-J, Wei T-C, Hsiue G-H (2011) Zwitterionic sulfobetaine-grafted poly(vinylidene fluoride) membrane with highly effective blood compatibility via atmospheric plasma-Induced surface copolymerization. ACS Appl Mater Inter 3:1228–1237CrossRef
21.
go back to reference Matsuno R, Ishihara K (2011) Integrated functional nanocolloids covered with artificial cell membranes for biomedical applications. Nano Today 6:61–74CrossRef Matsuno R, Ishihara K (2011) Integrated functional nanocolloids covered with artificial cell membranes for biomedical applications. Nano Today 6:61–74CrossRef
22.
go back to reference Jing BX, Qiu J, Zhu YX (2017) Organic-inorganic macroion coacervate complexation. Soft Matter 13:4881–4889CrossRef Jing BX, Qiu J, Zhu YX (2017) Organic-inorganic macroion coacervate complexation. Soft Matter 13:4881–4889CrossRef
23.
go back to reference Goda T, Furukawa H, Gong JP, Ishihara K (2013) Relaxation modes in chemically cross-linked poly(2-methacryloyloxyethyl phosphorylcholine) hydrogels. Soft Matter 9:2166–2171CrossRef Goda T, Furukawa H, Gong JP, Ishihara K (2013) Relaxation modes in chemically cross-linked poly(2-methacryloyloxyethyl phosphorylcholine) hydrogels. Soft Matter 9:2166–2171CrossRef
24.
go back to reference Shao Q, He Y, White AD, Jiang SY (2010) Difference in hydration between carboxybetaine and sulfobetaine. J Phys Chem B 114:16625–16631CrossRef Shao Q, He Y, White AD, Jiang SY (2010) Difference in hydration between carboxybetaine and sulfobetaine. J Phys Chem B 114:16625–16631CrossRef
25.
go back to reference Shao Q, Mi L, Han X et al (2014) Differences in cationic and anionic charge densities dictate zwitterionic associations and stimuli responses. J Phys Chem B 118:6956–6962CrossRef Shao Q, Mi L, Han X et al (2014) Differences in cationic and anionic charge densities dictate zwitterionic associations and stimuli responses. J Phys Chem B 118:6956–6962CrossRef
26.
go back to reference Zhao Y, Bai T, Shao Q, Jiang SY, Shen AQ (2015) Thermoresponsive self-assembled NiPAm-zwitterion copolymers. Polym Chem-UK 6:1066–1077CrossRef Zhao Y, Bai T, Shao Q, Jiang SY, Shen AQ (2015) Thermoresponsive self-assembled NiPAm-zwitterion copolymers. Polym Chem-UK 6:1066–1077CrossRef
27.
go back to reference Liu PS, Emmons E, Song J (2014) A comparative study of zwitterionic ligands-mediated mineralization and the potential of mineralized zwitterionic matrices for bone tissue engineering. J Mater Chem B 2:7524–7533CrossRef Liu PS, Emmons E, Song J (2014) A comparative study of zwitterionic ligands-mediated mineralization and the potential of mineralized zwitterionic matrices for bone tissue engineering. J Mater Chem B 2:7524–7533CrossRef
28.
go back to reference Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360CrossRef Peppas NA, Hilt JZ, Khademhosseini A, Langer R (2006) Hydrogels in biology and medicine: from molecular principles to bionanotechnology. Adv Mater 18:1345–1360CrossRef
29.
go back to reference Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329CrossRef Slaughter BV, Khurshid SS, Fisher OZ, Khademhosseini A, Peppas NA (2009) Hydrogels in regenerative medicine. Adv Mater 21:3307–3329CrossRef
30.
go back to reference Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12CrossRef Hoffman AS (2002) Hydrogels for biomedical applications. Adv Drug Deliv Rev 54:3–12CrossRef
31.
go back to reference Zhang Z, Vaisocherova H, Cheng G, Yang W, Xue H, Jiang SY (2008) Nonfouling behavior of polycarboxybetaine-grafted surfaces: structural and environmental effects. Biomacromol 9:2686–2692CrossRef Zhang Z, Vaisocherova H, Cheng G, Yang W, Xue H, Jiang SY (2008) Nonfouling behavior of polycarboxybetaine-grafted surfaces: structural and environmental effects. Biomacromol 9:2686–2692CrossRef
32.
go back to reference Zhang L, Xue H, Cao ZQ, Keefe A, Wang JN, Jiang SY (2011) Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance. Biomaterials 32:4604–4608CrossRef Zhang L, Xue H, Cao ZQ, Keefe A, Wang JN, Jiang SY (2011) Multifunctional and degradable zwitterionic nanogels for targeted delivery, enhanced MR imaging, reduction-sensitive drug release, and renal clearance. Biomaterials 32:4604–4608CrossRef
33.
go back to reference Carr LR, Xue H, Jiang SY (2011) Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker. Biomaterials 32:961–968CrossRef Carr LR, Xue H, Jiang SY (2011) Functionalizable and nonfouling zwitterionic carboxybetaine hydrogels with a carboxybetaine dimethacrylate crosslinker. Biomaterials 32:961–968CrossRef
34.
go back to reference Goda T, Matsuno R, Konno T, Takai M, Ishihara K (2009) Protein adsorption resistance and oxygen permeability of chemically crosslinked phospholipid polymer hydrogel for ophthalmologic biomaterials. J Biomed Mater Res B 89B:184–190CrossRef Goda T, Matsuno R, Konno T, Takai M, Ishihara K (2009) Protein adsorption resistance and oxygen permeability of chemically crosslinked phospholipid polymer hydrogel for ophthalmologic biomaterials. J Biomed Mater Res B 89B:184–190CrossRef
35.
go back to reference Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–36CrossRef Ritger PL, Peppas NA (1987) A simple equation for description of solute release I. Fickian and non-fickian release from non-swellable devices in the form of slabs, spheres, cylinders or discs. J Control Release 5:23–36CrossRef
36.
go back to reference Kasák P, Kroneková Z, Krupa I, Lacík I (2011) Zwitterionic hydrogels crosslinked with novel zwitterionic crosslinkers: synthesis and characterization. Polymer 52:3011–3020CrossRef Kasák P, Kroneková Z, Krupa I, Lacík I (2011) Zwitterionic hydrogels crosslinked with novel zwitterionic crosslinkers: synthesis and characterization. Polymer 52:3011–3020CrossRef
37.
go back to reference Serra L, Domenech J, Peppas NA (2006) Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 27:5440–5451CrossRef Serra L, Domenech J, Peppas NA (2006) Drug transport mechanisms and release kinetics from molecularly designed poly(acrylic acid-g-ethylene glycol) hydrogels. Biomaterials 27:5440–5451CrossRef
38.
go back to reference Yang WJ, Sundaram HS, Ella J-R, He NY, Jiang SY (2016) Low-fouling electrospun PLLA films modified with zwitterionic poly (sulfobetaine methacrylate)-catechol conjugates. Acta Biomater 40:92–99CrossRef Yang WJ, Sundaram HS, Ella J-R, He NY, Jiang SY (2016) Low-fouling electrospun PLLA films modified with zwitterionic poly (sulfobetaine methacrylate)-catechol conjugates. Acta Biomater 40:92–99CrossRef
39.
go back to reference Yang J, Zhu YN, Xu T et al (2016) The preservation of living cells with biocompatible microparticles. Nanotechnology 27:265101–265109CrossRef Yang J, Zhu YN, Xu T et al (2016) The preservation of living cells with biocompatible microparticles. Nanotechnology 27:265101–265109CrossRef
40.
go back to reference Chaudhuri O, Gu L, Klumpers D et al (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15:326–334CrossRef Chaudhuri O, Gu L, Klumpers D et al (2016) Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat Mater 15:326–334CrossRef
41.
go back to reference Das RK, Gocheva V, Hammink R, Zouani OF, Rowan AE (2016) Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat Mater 15:318–325CrossRef Das RK, Gocheva V, Hammink R, Zouani OF, Rowan AE (2016) Stress-stiffening-mediated stem-cell commitment switch in soft responsive hydrogels. Nat Mater 15:318–325CrossRef
42.
go back to reference Liu Y, Huglin MB (1995) Observations by DSC on bound water structure in some physically crosslinked hydrogels. Polym Int 37:63–67CrossRef Liu Y, Huglin MB (1995) Observations by DSC on bound water structure in some physically crosslinked hydrogels. Polym Int 37:63–67CrossRef
43.
go back to reference Meng F, Hennink WE, Zhong ZY (2009) Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30:2180–2198CrossRef Meng F, Hennink WE, Zhong ZY (2009) Reduction-sensitive polymers and bioconjugates for biomedical applications. Biomaterials 30:2180–2198CrossRef
Metadata
Title
A comprehensive study and comparison of four types of zwitterionic hydrogels
Authors
Weiqiang Zhao
Yingnan Zhu
Jiamin Zhang
Tong Xu
Qingsi Li
Hongshuang Guo
Jinwei Zhang
Cunguo Lin
Lei Zhang
Publication date
03-07-2018
Publisher
Springer US
Published in
Journal of Materials Science / Issue 19/2018
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2535-6

Other articles of this Issue 19/2018

Journal of Materials Science 19/2018 Go to the issue

Premium Partners