Skip to main content
Top
Published in: Cellulose 6/2012

01-12-2012 | Original Paper

Organization of aliphatic chains grafted on nanofibrillated cellulose and influence on final properties

Authors: Karim Missoum, Julien Bras, Mohamed Naceur Belgacem

Published in: Cellulose | Issue 6/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Chemical surface modification of nanofibrillated cellulose (NFC) was performed using a long aliphatic isocyanate chain. Different molar ratios of the coupling agents were tested, i.e., 1, 10, 30 equivalents with respect to hydroxyl groups of the NFC surface. FE-SEM analyses revealed that there were no changes in their morphology thus keeping nanofibril-like structure with about 30 nm of diameter. All these samples were characterized by different techniques (e.g., FTIR) to check the efficiency of the grafting. Hydrophobic NFC were achieved whatever the grafting agent ratio. The Degree of Substitution was determined by Elemental Analyses and the Degree of Substitution of the Surface was calculated thanks to X-ray Photoelectron Spectroscopy data. Combining these two techniques, the Internal Degree of Substitution was proposed for the first time. It indicates if the modification occurs also within NFC internal layers. Surface (contact angle), rheological (water suspension viscosity) and thermal properties (ThermoGravimetric Analysis) of grafted NFC do not follow the expected linear evolution of properties with the increase of molar ratio. X-Ray Diffraction analyses showed that the grafted aliphatic chains display crystalline waxy domains at some ratios. A model for aliphatic chain organization at the surface is proposed and clearly explained for the first time why a compromise in molar ratio is necessary to achieve best properties.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahmed A, Adnot A, Grandmaison JL, Kaliaguine S, Doucet J (1987) ESCA analysis of cellulosic materials. Cellulose Chem Technol 21(5):483–492 Ahmed A, Adnot A, Grandmaison JL, Kaliaguine S, Doucet J (1987) ESCA analysis of cellulosic materials. Cellulose Chem Technol 21(5):483–492
go back to reference Andresen M, Johansson LS, Tanem B, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677CrossRef Andresen M, Johansson LS, Tanem B, Stenius P (2006) Properties and characterization of hydrophobized microfibrillated cellulose. Cellulose 13:665–677CrossRef
go back to reference Belgacem MN, Gandini A (2009) Natural fibre-surface modification and characterisation. Natural fibre reinforced polymer composites: from macro to nanoscale chapter 2. In: Sabu T, Pothan L (eds) Cellulose fibre reinforced polymer composites. Old City Publishing, Philadelphie, pp 14–46 Belgacem MN, Gandini A (2009) Natural fibre-surface modification and characterisation. Natural fibre reinforced polymer composites: from macro to nanoscale chapter 2. In: Sabu T, Pothan L (eds) Cellulose fibre reinforced polymer composites. Old City Publishing, Philadelphie, pp 14–46
go back to reference Berglund LA, Peijs T (2010) Cellulose biocomposites—from bulk moldings to nanostructured systems. MRS Bull 35(03):201–207CrossRef Berglund LA, Peijs T (2010) Cellulose biocomposites—from bulk moldings to nanostructured systems. MRS Bull 35(03):201–207CrossRef
go back to reference Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10(8):2144–2151CrossRef Berlioz S, Molina-Boisseau S, Nishiyama Y, Heux L (2009) Gas-phase surface esterification of cellulose microfibrils and whiskers. Biomacromolecules 10(8):2144–2151CrossRef
go back to reference Buschle-Diller G, Zeronian SH (1992) Enhancing the reactivity and strength of cotton fibers. J Appl Polym Sci 45(6):967–979CrossRef Buschle-Diller G, Zeronian SH (1992) Enhancing the reactivity and strength of cotton fibers. J Appl Polym Sci 45(6):967–979CrossRef
go back to reference Carlmark A, Malmstrom E (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromolecules 4(6):1740–1745CrossRef Carlmark A, Malmstrom E (2003) ATRP grafting from cellulose fibers to create block-copolymer grafts. Biomacromolecules 4(6):1740–1745CrossRef
go back to reference Çetin NS, Tingaut P, Özmen N, Henry N, Harper D, Dadmun M, Sèbe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9(10):997–1003CrossRef Çetin NS, Tingaut P, Özmen N, Henry N, Harper D, Dadmun M, Sèbe G (2009) Acetylation of cellulose nanowhiskers with vinyl acetate under moderate conditions. Macromol Biosci 9(10):997–1003CrossRef
go back to reference Chinga-Carrasco G, Syverud K (2010) Computer-assisted quantification of the multi-scale structure of films made of nanofibrillated cellulose. J Nanopart Res 12(3):841–851CrossRef Chinga-Carrasco G, Syverud K (2010) Computer-assisted quantification of the multi-scale structure of films made of nanofibrillated cellulose. J Nanopart Res 12(3):841–851CrossRef
go back to reference Coskun M, Temüz MM (2005) Grafting studies onto cellulose by atom-transfer radical polymerization. Polym Int 54(2):342–347CrossRef Coskun M, Temüz MM (2005) Grafting studies onto cellulose by atom-transfer radical polymerization. Polym Int 54(2):342–347CrossRef
go back to reference Dorris GM, Gray D (1978a) The surface analysis of paper and wood fibres by ESCA (electron spectroscopy for chemical analysis). I. Application to cellulose and lignin. Cellulose Chem Technol 12:9–23 Dorris GM, Gray D (1978a) The surface analysis of paper and wood fibres by ESCA (electron spectroscopy for chemical analysis). I. Application to cellulose and lignin. Cellulose Chem Technol 12:9–23
go back to reference Dorris GM, Gray D (1978b) The surface analysis of paper and wood fibres by ESCA. II. Surface composition of mechanical pulps. Cellulose Chem Technol 12:721–734 Dorris GM, Gray D (1978b) The surface analysis of paper and wood fibres by ESCA. II. Surface composition of mechanical pulps. Cellulose Chem Technol 12:721–734
go back to reference Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRef Eichhorn SJ, Dufresne A, Aranguren M, Marcovich NE, Capadona JR, Rowan SJ, Weder C, Thielemans W, Roman M, Renneckar S, Gindl W, Veigel S, Keckes J, Yano H, Abe K, Nogi M, Nakagaito AN, Mangalam A, Simonsen J, Benight AS, Bismarck A, Berglund LA, Peijs T (2010) Review: current international research into cellulose nanofibres and nanocomposites. J Mater Sci 45:1–33CrossRef
go back to reference Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30CrossRef Eyholzer C, Bordeanu N, Lopez-Suevos F, Rentsch D, Zimmermann T, Oksman K (2010) Preparation and characterization of water-redispersible nanofibrillated cellulose in powder form. Cellulose 17:19–30CrossRef
go back to reference Gaiolas C, Belgacem MN, Silva L, Thielemans W, Costa AP, Nunes M, Silva MJS (2009) Green chemicals and process to graft cellulose fibers. J Colloid Interface Sci 330(2):298–302CrossRef Gaiolas C, Belgacem MN, Silva L, Thielemans W, Costa AP, Nunes M, Silva MJS (2009) Green chemicals and process to graft cellulose fibers. J Colloid Interface Sci 330(2):298–302CrossRef
go back to reference Gandini A, Belgacem MN (2011) Physical & chemical methods of fiber surface modification. In: Zafeiropoulos E (ed) Interface engineering in natural fibre composites for maximum performance. Woodhead Publishing, Cambridge, UK, pp 3–42 Gandini A, Belgacem MN (2011) Physical & chemical methods of fiber surface modification. In: Zafeiropoulos E (ed) Interface engineering in natural fibre composites for maximum performance. Woodhead Publishing, Cambridge, UK, pp 3–42
go back to reference Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651CrossRef Goussé C, Chanzy H, Excoffier G, Soubeyrand L, Fleury E (2002) Stable suspensions of partially silylated cellulose whiskers dispersed in organic solvents. Polymer 43(9):2645–2651CrossRef
go back to reference Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef Habibi Y, Lucia LA, Rojas OJ (2010) Cellulose nanocrystals: chemistry, self-assembly, and applications. Chem Rev 110(6):3479–3500CrossRef
go back to reference Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci 28(1):797–813 Herrick FW, Casebier RL, Hamilton JK, Sandberg KR (1983) Microfibrillated cellulose: morphology and accessibility. J Appl Polym Sci 28(1):797–813
go back to reference Hon DN-S, Shiraishi N (2001) Wood and cellulosic chemistry, vol chapter 3: structure of cellulose. Marcel Dekker, New York, USA Hon DN-S, Shiraishi N (2001) Wood and cellulosic chemistry, vol chapter 3: structure of cellulose. Marcel Dekker, New York, USA
go back to reference Huang B, Ge JJ, Li Y, Hou H (2007) Aliphatic acid esters of (2-hydroxypropyl) cellulose—effect of side chain length on properties of cholesteric liquid crystals. Polymer 48(1):264–269CrossRef Huang B, Ge JJ, Li Y, Hou H (2007) Aliphatic acid esters of (2-hydroxypropyl) cellulose—effect of side chain length on properties of cholesteric liquid crystals. Polymer 48(1):264–269CrossRef
go back to reference Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71CrossRef Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71CrossRef
go back to reference Johansson L, Campbell J, Koljonen K, Kleen M, Buchert J (2004) On surface distributions in natural cellulosic fibres. Surf Interface Anal 36(8):706–710CrossRef Johansson L, Campbell J, Koljonen K, Kleen M, Buchert J (2004) On surface distributions in natural cellulosic fibres. Surf Interface Anal 36(8):706–710CrossRef
go back to reference Johansson L, Campbell J, Fardim P, Hultén A, Boisvert J, Ernstsson M (2005) An XPS round robin investigation on analysis of wood pulp fibres and filter paper. Surf Sci 584(1):126–132CrossRef Johansson L, Campbell J, Fardim P, Hultén A, Boisvert J, Ernstsson M (2005) An XPS round robin investigation on analysis of wood pulp fibres and filter paper. Surf Sci 584(1):126–132CrossRef
go back to reference Johansson L, Tammelin T, Campbell J, Setälä H, Österberg M (2011) Experimental evidence on medium driven cellulose surface adaptation demonstrated using nanofibrillated cellulose. Soft Matter 22(7):10917–10924CrossRef Johansson L, Tammelin T, Campbell J, Setälä H, Österberg M (2011) Experimental evidence on medium driven cellulose surface adaptation demonstrated using nanofibrillated cellulose. Soft Matter 22(7):10917–10924CrossRef
go back to reference Jonoobi M, Harun J, Mathew A, Hussein M, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17(2):299–307CrossRef Jonoobi M, Harun J, Mathew A, Hussein M, Oksman K (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17(2):299–307CrossRef
go back to reference Katz S, Gray DG (1980) Solvent extraction for the ESCA analysis of paper. Svensk Papperstidning 8:226–228 Katz S, Gray DG (1980) Solvent extraction for the ESCA analysis of paper. Svensk Papperstidning 8:226–228
go back to reference Krouit M, Bras J, Belgacem MN (2008) Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry. Eur Polymer J 44(12):4074–4081CrossRef Krouit M, Bras J, Belgacem MN (2008) Cellulose surface grafting with polycaprolactone by heterogeneous click-chemistry. Eur Polymer J 44(12):4074–4081CrossRef
go back to reference Labet M, Thielemans W, Dufresne A (2007) Polymer grafting onto starch nanocrystals. Biomacromolecules 8(9):2916–2927CrossRef Labet M, Thielemans W, Dufresne A (2007) Polymer grafting onto starch nanocrystals. Biomacromolecules 8(9):2916–2927CrossRef
go back to reference Lee JL, Pearce EM, Kwei TK (1997a) Morphological development in alkyl-substituted semiflexible polymers. Macromolecules 30(26):8233–8244CrossRef Lee JL, Pearce EM, Kwei TK (1997a) Morphological development in alkyl-substituted semiflexible polymers. Macromolecules 30(26):8233–8244CrossRef
go back to reference Lee JL, Pearce EM, Kwei TK (1997b) Side-chain crystallization in alkyl-substituted semiflexible polymers. Macromolecules 30(22):6877–6883CrossRef Lee JL, Pearce EM, Kwei TK (1997b) Side-chain crystallization in alkyl-substituted semiflexible polymers. Macromolecules 30(22):6877–6883CrossRef
go back to reference Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 11(4):3274–3294CrossRef Lin N, Huang J, Dufresne A (2012) Preparation, properties and applications of polysaccharide nanocrystals in advanced functional nanomaterials: a review. Nanoscale 11(4):3274–3294CrossRef
go back to reference Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12(3):633–641CrossRef Liu A, Walther A, Ikkala O, Belova L, Berglund LA (2011) Clay nanopaper with tough cellulose nanofiber matrix for fire retardancy and gas barrier functions. Biomacromolecules 12(3):633–641CrossRef
go back to reference Lonnberg H, Zhou Q, Brumer H, Teeri TT, Malmstrom E, Hult A (2006) Grafting of cellulose fibers with poly(ε-caprolactone) and poly(l-lactic acid) via ring-opening polymerization. Biomacromolecules 7(7):2178–2185CrossRef Lonnberg H, Zhou Q, Brumer H, Teeri TT, Malmstrom E, Hult A (2006) Grafting of cellulose fibers with poly(ε-caprolactone) and poly(l-lactic acid) via ring-opening polymerization. Biomacromolecules 7(7):2178–2185CrossRef
go back to reference Lonnberg H, Larsson K, Lindström T, Hult A, Malmström E (2011) Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites—influence of the graft length on the mechanical properties. ACS Appl Mater Interfaces 3(5):1426–1433CrossRef Lonnberg H, Larsson K, Lindström T, Hult A, Malmström E (2011) Synthesis of polycaprolactone-grafted microfibrillated cellulose for use in novel bionanocomposites—influence of the graft length on the mechanical properties. ACS Appl Mater Interfaces 3(5):1426–1433CrossRef
go back to reference Lu J, Askel P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5):1285–1296CrossRef Lu J, Askel P, Drzal LT (2008) Surface modification of microfibrillated cellulose for epoxy composite applications. Polymer 49(5):1285–1296CrossRef
go back to reference Ly B, Bras J, Sadocco P, Belgacem MN, Dufresne A, Thielemans W (2010) Surface functionalization of cellulose by grafting oligoether chains. Mater Chem Phys 120(2–3):438–445CrossRef Ly B, Bras J, Sadocco P, Belgacem MN, Dufresne A, Thielemans W (2010) Surface functionalization of cellulose by grafting oligoether chains. Mater Chem Phys 120(2–3):438–445CrossRef
go back to reference Majoinen J, Walther A, McKee JR, Kontturi E, Aseyev V, Malho JM, Ruokolainen J, Ikkala O (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12(8):2997–3006CrossRef Majoinen J, Walther A, McKee JR, Kontturi E, Aseyev V, Malho JM, Ruokolainen J, Ikkala O (2011) Polyelectrolyte brushes grafted from cellulose nanocrystals using Cu-mediated surface-initiated controlled radical polymerization. Biomacromolecules 12(8):2997–3006CrossRef
go back to reference Menezes AJd, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50(19):4552–4563CrossRef Menezes AJd, Siqueira G, Curvelo AAS, Dufresne A (2009) Extrusion and characterization of functionalized cellulose whiskers reinforced polyethylene nanocomposites. Polymer 50(19):4552–4563CrossRef
go back to reference Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. doi:10.1021/bm061215p CrossRef Pääkkö M, Ankerfors M, Kosonen H, Nykänen A, Ahola S, Österberg M, Ruokolainen J, Laine J, Larsson PT, Ikkala O, Lindström T (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941. doi:10.​1021/​bm061215p CrossRef
go back to reference Paquet O, Krouit M, Bras J, Thielemans W, Belgacem MN (2010) Surface modification of cellulose by PCL grafts. Acta Mater 58(3):792–801CrossRef Paquet O, Krouit M, Bras J, Thielemans W, Belgacem MN (2010) Surface modification of cellulose by PCL grafts. Acta Mater 58(3):792–801CrossRef
go back to reference Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38(25):10363–10372CrossRef Roy D, Guthrie JT, Perrier S (2005) Graft polymerization: grafting poly(styrene) from cellulose via reversible addition-fragmentation chain transfer (RAFT) polymerization. Macromolecules 38(25):10363–10372CrossRef
go back to reference Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5):1983–1989. doi:10.1021/bm0497769 CrossRef Saito T, Isogai A (2004) TEMPO-mediated oxidation of native cellulose. The effect of oxidation conditions on chemical and crystal structures of the water-insoluble fractions. Biomacromolecules 5(5):1983–1989. doi:10.​1021/​bm0497769 CrossRef
go back to reference Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691CrossRef Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from TEMPO-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691CrossRef
go back to reference Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491CrossRef Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491CrossRef
go back to reference Scofield JH (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8(2):129–137CrossRef Scofield JH (1976) Hartree-Slater subshell photoionization cross-sections at 1254 and 1487 eV. J Electron Spectrosc Relat Phenom 8(2):129–137CrossRef
go back to reference Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432CrossRef Siqueira G, Bras J, Dufresne A (2009) Cellulose whiskers versus microfibrils: influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules 10(2):425–432CrossRef
go back to reference Siqueira G, Bras J, Dufresne A (2010a) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765CrossRef Siqueira G, Bras J, Dufresne A (2010a) Cellulosic bionanocomposites: a review of preparation, properties and applications. Polymers 2(4):728–765CrossRef
go back to reference Siqueira G, Bras J, Dufresne A (2010b) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26(1):402–411CrossRef Siqueira G, Bras J, Dufresne A (2010b) New process of chemical grafting of cellulose nanoparticles with a long chain isocyanate. Langmuir 26(1):402–411CrossRef
go back to reference Siqueira G, Tapin-Lingua S, Bras J, Perez DdS, Dufresne A (2010c) Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 18(1):57–65CrossRef Siqueira G, Tapin-Lingua S, Bras J, Perez DdS, Dufresne A (2010c) Mechanical properties of natural rubber nanocomposites reinforced with cellulosic nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 18(1):57–65CrossRef
go back to reference Siqueira G, Tapin-Lingua S, Bras J, Perez DdS, Dufresne A (2010d) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17(6):1147–1158CrossRef Siqueira G, Tapin-Lingua S, Bras J, Perez DdS, Dufresne A (2010d) Morphological investigation of nanoparticles obtained from combined mechanical shearing, and enzymatic and acid hydrolysis of sisal fibers. Cellulose 17(6):1147–1158CrossRef
go back to reference Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494CrossRef
go back to reference Stenstad P, Andresen M, Tanem B, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15(1):35–45CrossRef Stenstad P, Andresen M, Tanem B, Stenius P (2008) Chemical surface modifications of microfibrillated cellulose. Cellulose 15(1):35–45CrossRef
go back to reference Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84(3):1033–1038CrossRef Syverud K, Chinga-Carrasco G, Toledo J, Toledo PG (2011) A comparative study of eucalyptus and Pinus radiata pulp fibres as raw materials for production of cellulose nanofibrils. Carbohydr Polym 84(3):1033–1038CrossRef
go back to reference Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464CrossRef Tingaut P, Zimmermann T, Lopez-Suevos F (2010) Synthesis and characterization of bionanocomposites with tunable properties from poly(lactic acid) and acetylated microfibrillated cellulose. Biomacromolecules 11:454–464CrossRef
go back to reference Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci 28(1):815–827 Turbak AF, Snyder FW, Sandberg KR (1983) Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J Appl Polym Sci 28(1):815–827
go back to reference Walther A, Timonen JVI, Díez I, Laukkanen A, Ikkala O (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23(26):2924–2928CrossRef Walther A, Timonen JVI, Díez I, Laukkanen A, Ikkala O (2011) Multifunctional high-performance biofibers based on wet-extrusion of renewable native cellulose nanofibrils. Adv Mater 23(26):2924–2928CrossRef
go back to reference Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79(4):1086–1093CrossRef Zimmermann T, Bordeanu N, Strub E (2010) Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydr Polym 79(4):1086–1093CrossRef
Metadata
Title
Organization of aliphatic chains grafted on nanofibrillated cellulose and influence on final properties
Authors
Karim Missoum
Julien Bras
Mohamed Naceur Belgacem
Publication date
01-12-2012
Publisher
Springer Netherlands
Published in
Cellulose / Issue 6/2012
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-012-9780-7

Other articles of this Issue 6/2012

Cellulose 6/2012 Go to the issue