Skip to main content
Top
Published in: Cellulose 6/2012

01-12-2012 | Original Paper

A fundamental investigation of the microarchitecture and mechanical properties of tempo-oxidized nanofibrillated cellulose (NFC)-based aerogels

Authors: Teresa Cristina Fonseca Silva, Youssef Habibi, Jorge Luiz Colodette, Thomas Elder, Lucian A. Lucia

Published in: Cellulose | Issue 6/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Freeze-dried nanofibrillated cellulose based-aerogels were produced from cellulosic pulps extracted from Eucalyptus urograndis. Nanofibers were isolated under high pressure and modified with TEMPO-mediated oxidation and/or hydroxyapatite (HAp) to observe potential changes in mechanical properties. Two degrees of oxidation (DO), 0.1 and 0.2, were achieved as measured by conductimetric titration. Oxidized and non-oxidized samples were modified with HAp at a ratio of HAp:cellulose of 0.2:1. Morphology (FE-SEM), pore size, surface area, and mechanical properties were obtained to characterize the produced aerogels. The results clearly demonstrate a homogeneous morphology for aerogels fabricated with oxidized cellulose nanofibers. The nature of water present in the material was measured using time domain-nuclear magnetic resonance spectroscopy (TD-NMR) and demonstrated that it played a key role in the development of the porous and uniform micro-architecture. TEMPO-mediated oxidation and the addition of HAp resulted in aerogels with high mechanical strength as demonstrated from an increase from approximately 75–200 kPa in compressive strength when reduced to 50 % of their original height. However, the contribution of oxidation to the mechanical properties was more pronounced than the addition of HAp. In general, the density of the aerogels varied from 0.008 to 0.011 g/cm3 in which slightly lightweight aerogels were produced by increasing the degree of oxidation, whereas the incorporation of HAp as a modifying agent for potential bio-based tissue scaffolding matrices did not significantly contribute to higher densities.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Archer EA, Gong H, Krische MJ (2001) Hydrogen bonding in noncovalent synthesis: selectivity and the directed organization of molecular strands. Tetrahedron 57:1139–1159CrossRef Archer EA, Gong H, Krische MJ (2001) Hydrogen bonding in noncovalent synthesis: selectivity and the directed organization of molecular strands. Tetrahedron 57:1139–1159CrossRef
go back to reference Aulin C, Netrval J, Wagberg L, Lindstrom T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6(14):3298–3305CrossRef Aulin C, Netrval J, Wagberg L, Lindstrom T (2010) Aerogels from nanofibrillated cellulose with tunable oleophobicity. Soft Matter 6(14):3298–3305CrossRef
go back to reference Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84(3):975–983CrossRef Besbes I, Alila S, Boufi S (2011) Nanofibrillated cellulose from TEMPO-oxidized eucalyptus fibres: effect of the carboxyl content. Carbohydr Polym 84(3):975–983CrossRef
go back to reference Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-Mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27:49–66CrossRef Bragd PL, van Bekkum H, Besemer AC (2004) TEMPO-Mediated oxidation of polysaccharides: survey of methods and applications. Top Catal 27:49–66CrossRef
go back to reference Burchell MJ, Creighton JA, Cole MJ, Mann J, Kearsley AT (2001) Capture of particles in hypervelocity impacts in aerogel. Meteorit Planet Sci 36(2):209–221CrossRef Burchell MJ, Creighton JA, Cole MJ, Mann J, Kearsley AT (2001) Capture of particles in hypervelocity impacts in aerogel. Meteorit Planet Sci 36(2):209–221CrossRef
go back to reference da Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-Mediated oxidation of cellulose III. Biomacromolecules 4(5):1417–1425CrossRef da Silva Perez D, Montanari S, Vignon MR (2003) TEMPO-Mediated oxidation of cellulose III. Biomacromolecules 4(5):1417–1425CrossRef
go back to reference de Nooy AEJ, Besemer AC, van Bekkum H (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269(1):89–98CrossRef de Nooy AEJ, Besemer AC, van Bekkum H (1995) Highly selective nitroxyl radical-mediated oxidation of primary alcohol groups in water-soluble glucans. Carbohydr Res 269(1):89–98CrossRef
go back to reference Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092CrossRef Dufresne A, Dupeyre D, Vignon MR (2000) Cellulose microfibrils from potato tuber cells: processing and characterization of starch–cellulose microfibril composites. J Appl Polym Sci 76(14):2080–2092CrossRef
go back to reference Elder T, Labbé N, Harper D, Rials T (2006) Time domain-nuclear magnetic resonance study of chars from southern hardwoods. Biomass Bioenergy 30(10):855–862CrossRef Elder T, Labbé N, Harper D, Rials T (2006) Time domain-nuclear magnetic resonance study of chars from southern hardwoods. Biomass Bioenergy 30(10):855–862CrossRef
go back to reference Felby C, Thygesen L, Kristensen J, Jørgensen H, Elder T (2008) Cellulose–water interactions during enzymatic hydrolysis as studied by time domain NMR. Cellulose 15(5):703–710CrossRef Felby C, Thygesen L, Kristensen J, Jørgensen H, Elder T (2008) Cellulose–water interactions during enzymatic hydrolysis as studied by time domain NMR. Cellulose 15(5):703–710CrossRef
go back to reference Gavillon R, Budtova T (2007) Aerocellulose: new highly porous cellulose prepared from cellulose−naoh aqueous solutions. Biomacromolecules 9(1):269–277CrossRef Gavillon R, Budtova T (2007) Aerocellulose: new highly porous cellulose prepared from cellulose−naoh aqueous solutions. Biomacromolecules 9(1):269–277CrossRef
go back to reference Gawryla MD, van den Berg O, Weder C, Schiraldi DA (2009) Clay aerogel/cellulose whisker nanocomposites: a nanoscale wattle and daub. J Mater Chem 19(15):2118–2124CrossRef Gawryla MD, van den Berg O, Weder C, Schiraldi DA (2009) Clay aerogel/cellulose whisker nanocomposites: a nanoscale wattle and daub. J Mater Chem 19(15):2118–2124CrossRef
go back to reference Habibi Y, Chanzy H, Vignon M (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13(6):679–687CrossRef Habibi Y, Chanzy H, Vignon M (2006) TEMPO-mediated surface oxidation of cellulose whiskers. Cellulose 13(6):679–687CrossRef
go back to reference Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12(8):1448–1453CrossRef Heath L, Thielemans W (2010) Cellulose nanowhisker aerogels. Green Chem 12(8):1448–1453CrossRef
go back to reference Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15(1):121–129CrossRef Hoepfner S, Ratke L, Milow B (2008) Synthesis and characterisation of nanofibrillar cellulose aerogels. Cellulose 15(1):121–129CrossRef
go back to reference Hong L, Wang YL, Jia SR, Huang Y, Gao C, Wan YZ (2006) Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Mater Lett 60(13–14):1710–1713CrossRef Hong L, Wang YL, Jia SR, Huang Y, Gao C, Wan YZ (2006) Hydroxyapatite/bacterial cellulose composites synthesized via a biomimetic route. Mater Lett 60(13–14):1710–1713CrossRef
go back to reference Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244(1):126–135CrossRef Innerlohinger J, Weber HK, Kraft G (2006) Aerocellulose: aerogels and aerogel-like materials made from cellulose. Macromol Symp 244(1):126–135CrossRef
go back to reference Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85CrossRef Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85CrossRef
go back to reference Kwak DH, Hong SJ, Kim DJ, Greil P (2010) The formation of hydroxyapatite on chemically-modified cellulose fibers. J Ceram Process Res 11(2):170–172 Kwak DH, Hong SJ, Kim DJ, Greil P (2010) The formation of hydroxyapatite on chemically-modified cellulose fibers. J Ceram Process Res 11(2):170–172
go back to reference Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M (2008) Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung 62(2):129–135CrossRef Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M (2008) Cellulose aerogels: highly porous, ultra-lightweight materials. Holzforschung 62(2):129–135CrossRef
go back to reference Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11(6):1696–1700CrossRef Okita Y, Saito T, Isogai A (2010) Entire surface oxidation of various cellulose microfibrils by TEMPO-mediated oxidation. Biomacromolecules 11(6):1696–1700CrossRef
go back to reference Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4(12):2492–2499CrossRef Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund LA, Ikkala O (2008) Long and entangled native cellulose I nanofibers allow flexible aerogels and hierarchically porous templates for functionalities. Soft Matter 4(12):2492–2499CrossRef
go back to reference Park S, Venditti RA, Jameel H, Pawlak JJ (2006) Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohydr Polym 66(1):97–103CrossRef Park S, Venditti RA, Jameel H, Pawlak JJ (2006) Changes in pore size distribution during the drying of cellulose fibers as measured by differential scanning calorimetry. Carbohydr Polym 66(1):97–103CrossRef
go back to reference Saito T, Isogai A (2006) Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Ind Eng Chem Res 46(3):773–780CrossRef Saito T, Isogai A (2006) Wet strength improvement of TEMPO-oxidized cellulose sheets prepared with cationic polymers. Ind Eng Chem Res 46(3):773–780CrossRef
go back to reference Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from tempo-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691CrossRef Saito T, Nishiyama Y, Putaux J-L, Vignon M, Isogai A (2006) Homogeneous suspensions of individualized microfibrils from tempo-catalyzed oxidation of native cellulose. Biomacromolecules 7(6):1687–1691CrossRef
go back to reference Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491CrossRef Saito T, Kimura S, Nishiyama Y, Isogai A (2007) Cellulose nanofibers prepared by tempo-mediated oxidation of native cellulose. Biomacromolecules 8(8):2485–2491CrossRef
go back to reference Sehaqui H, Allais M, Zhou Q, Berglund LA (2011a) Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Comp Sci Technol 71(3):382–387 Sehaqui H, Allais M, Zhou Q, Berglund LA (2011a) Wood cellulose biocomposites with fibrous structures at micro- and nanoscale. Comp Sci Technol 71(3):382–387
go back to reference Sehaqui H, Zhou Q, Berglund LA (2011b) Nanostructured biocomposites of high toughness – a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 7(16):7342–7350 Sehaqui H, Zhou Q, Berglund LA (2011b) Nanostructured biocomposites of high toughness – a wood cellulose nanofiber network in ductile hydroxyethylcellulose matrix. Soft Matter 7(16):7342–7350
go back to reference Suh DJ, Park T-J (1996) Sol−Gel strategies for pore size control of high-surface-area transition-metal oxide aerogels. Chem Mater 8(2):509–513CrossRef Suh DJ, Park T-J (1996) Sol−Gel strategies for pore size control of high-surface-area transition-metal oxide aerogels. Chem Mater 8(2):509–513CrossRef
go back to reference Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, Jiang HJ (2006) Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos Sci Technol 66(11–12):1825–1832CrossRef Wan YZ, Hong L, Jia SR, Huang Y, Zhu Y, Wang YL, Jiang HJ (2006) Synthesis and characterization of hydroxyapatite-bacterial cellulose nanocomposites. Compos Sci Technol 66(11–12):1825–1832CrossRef
go back to reference Wan YZ, Gao C, Luo HL, He F, Liang H, Li XL, Wang YL (2009) Early growth of nano-sized calcium phosphate on phosphorylated bacterial cellulose nanofibers. J Nanosci Nanotechnol 9(11):6494–6500CrossRef Wan YZ, Gao C, Luo HL, He F, Liang H, Li XL, Wang YL (2009) Early growth of nano-sized calcium phosphate on phosphorylated bacterial cellulose nanofibers. J Nanosci Nanotechnol 9(11):6494–6500CrossRef
go back to reference Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31(1):43–49CrossRef Zimmermann KA, LeBlanc JM, Sheets KT, Fox RW, Gatenholm P (2011) Biomimetic design of a bacterial cellulose/hydroxyapatite nanocomposite for bone healing applications. Mater Sci Eng C 31(1):43–49CrossRef
Metadata
Title
A fundamental investigation of the microarchitecture and mechanical properties of tempo-oxidized nanofibrillated cellulose (NFC)-based aerogels
Authors
Teresa Cristina Fonseca Silva
Youssef Habibi
Jorge Luiz Colodette
Thomas Elder
Lucian A. Lucia
Publication date
01-12-2012
Publisher
Springer Netherlands
Published in
Cellulose / Issue 6/2012
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-012-9761-x

Other articles of this Issue 6/2012

Cellulose 6/2012 Go to the issue