Skip to main content
Top
Published in: Multimedia Systems 5/2022

07-05-2022 | Regular Paper

Overcoming the practical restrictions in H.266/VVC-based video communication systems by a PI bit rate controller

Authors: Farhad Raufmehr, Mohammad Reza Salehi, Ebrahim Abiri

Published in: Multimedia Systems | Issue 5/2022

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, the limitations in the Versatile Video Coding (H.266/VVC)-based communication systems are overcome through a bit rate controller. The limitations include the bandwidth and the buffer size. The proposed controller is of the variable bit rate type. It controls the bit rate fluctuation and maintains the buffer fullness within the admissible boundaries. These are performed by manipulating the quantization parameter. The proportional-integral (PI) controllers are more accurate than the proportional ones. Hence, a PI scheme is employed in the design process. The encoder shows stochastic and non-linear behavior. Moreover, the analytical model of its behavior is unavailable. These challenges are tackled via dynamic programming. The control criterion is developed using the Q-learning algorithm. Experimental results show the proposed method controls the bit rate with an average error equal to 1.4%. It is worthy of noting that the proposed method satisfies the buffering constraints. The average provided quality level in the proposed method is 36.47 dB. This amount is higher than those of the conventional methods. The performance analysis shows the proposed scheme has the bit rate saving capability compared with other methods.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Garcia-Lucas, D., Cebrian-Marquez, G., Cuenca, P.: Rate-distortion/complexity analysis of HEVC, VVC and AV1 video codecs. Multimed. Tools Appl. 79(39), 29621–29638 (2020)CrossRef Garcia-Lucas, D., Cebrian-Marquez, G., Cuenca, P.: Rate-distortion/complexity analysis of HEVC, VVC and AV1 video codecs. Multimed. Tools Appl. 79(39), 29621–29638 (2020)CrossRef
2.
go back to reference Battista, S., Conti, M., Orcioni, S.: Methodology for modeling and comparing video codecs: HEVC, EVC, and VVC. Electronics 9(10), 1579 (2020)CrossRef Battista, S., Conti, M., Orcioni, S.: Methodology for modeling and comparing video codecs: HEVC, EVC, and VVC. Electronics 9(10), 1579 (2020)CrossRef
3.
go back to reference Bross, B.: General video coding technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30, 1226–1240 (2019)CrossRef Bross, B.: General video coding technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30, 1226–1240 (2019)CrossRef
4.
go back to reference Xiu, X., Hanhart, P., He, Y., Ye, Y., Vanam, R., Lu, T., Pu, F., Yin, P.: A Unified video codec for SDR, HDR, and 360° video applications. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1296–1310 (2019)CrossRef Xiu, X., Hanhart, P., He, Y., Ye, Y., Vanam, R., Lu, T., Pu, F., Yin, P.: A Unified video codec for SDR, HDR, and 360° video applications. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1296–1310 (2019)CrossRef
5.
go back to reference François, E., Segall, C.A., Tourapis, A.M., Yin, P., Rusanovskyy, D.: High dynamic range video coding technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1253–1266 (2019)CrossRef François, E., Segall, C.A., Tourapis, A.M., Yin, P., Rusanovskyy, D.: High dynamic range video coding technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1253–1266 (2019)CrossRef
6.
go back to reference Ye, Y., Boyce, J.M., Hanhart, P.: Omnidirectional 360° video coding technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1241–1252 (2019)CrossRef Ye, Y., Boyce, J.M., Hanhart, P.: Omnidirectional 360° video coding technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1241–1252 (2019)CrossRef
7.
go back to reference Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming using Function Approximators, vol. 39. CRC Press, Boca Raton (2010)MATH Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming using Function Approximators, vol. 39. CRC Press, Boca Raton (2010)MATH
8.
go back to reference Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2020)MATH Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2020)MATH
9.
go back to reference Wien, M.: High Efficiency Video Coding. Coding Tools and Specification, pp. 133–160. Springer, Berlin (2015) Wien, M.: High Efficiency Video Coding. Coding Tools and Specification, pp. 133–160. Springer, Berlin (2015)
10.
go back to reference Choi, H., Yoo, J., Nam, J., Sim, D., Bajić, I.V.: Pixel-wise unified rate-quantization model for multi-level rate control. IEEE J. Sel. Top. Signal Process. 7(6), 1112–1123 (2013)CrossRef Choi, H., Yoo, J., Nam, J., Sim, D., Bajić, I.V.: Pixel-wise unified rate-quantization model for multi-level rate control. IEEE J. Sel. Top. Signal Process. 7(6), 1112–1123 (2013)CrossRef
11.
go back to reference Lee, B., Kim, M., Nguyen, T.Q.: A frame-level rate control scheme based on texture and nontexture rate models for high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 24(3), 465–479 (2013)CrossRef Lee, B., Kim, M., Nguyen, T.Q.: A frame-level rate control scheme based on texture and nontexture rate models for high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 24(3), 465–479 (2013)CrossRef
12.
go back to reference Seo, C.-W., Moon, J.-H., Han, J.-K.: Rate control for consistent objective quality in high efficiency video coding. IEEE Trans. Image Process. 22(6), 2442–2454 (2013)MathSciNetMATHCrossRef Seo, C.-W., Moon, J.-H., Han, J.-K.: Rate control for consistent objective quality in high efficiency video coding. IEEE Trans. Image Process. 22(6), 2442–2454 (2013)MathSciNetMATHCrossRef
13.
go back to reference Fang, M., Han, Y., Wen, J.: Genetic algorithm based rate control for AV1. IEEE Signal Process. Lett. 27, 520–524 (2020)CrossRef Fang, M., Han, Y., Wen, J.: Genetic algorithm based rate control for AV1. IEEE Signal Process. Lett. 27, 520–524 (2020)CrossRef
14.
go back to reference Wang, S., Ma, S., Wang, S., Zhao, D., Gao, W.: Rate-GOP based rate control for high efficiency video coding. IEEE J. Sel. Top. Signal Process. 7(6), 1101–1111 (2013)CrossRef Wang, S., Ma, S., Wang, S., Zhao, D., Gao, W.: Rate-GOP based rate control for high efficiency video coding. IEEE J. Sel. Top. Signal Process. 7(6), 1101–1111 (2013)CrossRef
15.
go back to reference Yan, T., Ra, I.-H., Wen, H., Weng, M.-H., Zhang, Q., Che, Y.: CTU layer rate control algorithm in scene change video for free-viewpoint video. IEEE Access 8, 24549–24560 (2020)CrossRef Yan, T., Ra, I.-H., Wen, H., Weng, M.-H., Zhang, Q., Che, Y.: CTU layer rate control algorithm in scene change video for free-viewpoint video. IEEE Access 8, 24549–24560 (2020)CrossRef
16.
go back to reference Li, B., Li, H., Li, L., Zhang, J.: Domain rate control algorithm for high efficiency video coding. IEEE Trans. Image Process. 23(9), 3841–3854 (2014)MathSciNetMATHCrossRef Li, B., Li, H., Li, L., Zhang, J.: Domain rate control algorithm for high efficiency video coding. IEEE Trans. Image Process. 23(9), 3841–3854 (2014)MathSciNetMATHCrossRef
17.
go back to reference Li, L., Li, B., Li, H., Chen, C.W.: Domain optimal bit allocation algorithm for high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 28(1), 130–142 (2016)CrossRef Li, L., Li, B., Li, H., Chen, C.W.: Domain optimal bit allocation algorithm for high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 28(1), 130–142 (2016)CrossRef
18.
go back to reference Mir, J., Talagala, D.S., Fernando, A., Husain, S.S.: Improved HEVC -domain rate control algorithm for HDR video. SIViP 13(3), 439–445 (2019)CrossRef Mir, J., Talagala, D.S., Fernando, A., Husain, S.S.: Improved HEVC -domain rate control algorithm for HDR video. SIViP 13(3), 439–445 (2019)CrossRef
19.
go back to reference Li, L., Yan, N., Li, Z., Liu, S., Li, H.: Domain perceptual rate control for 360-degree video compression. IEEE J. Sel. Top. Signal Process. 14(1), 130–145 (2019)CrossRef Li, L., Yan, N., Li, Z., Liu, S., Li, H.: Domain perceptual rate control for 360-degree video compression. IEEE J. Sel. Top. Signal Process. 14(1), 130–145 (2019)CrossRef
20.
go back to reference Li, L., Li, Z., Liu, S., Li, H.: Rate control for video-based point cloud compression. IEEE Trans. Image Process. 29, 6237–6250 (2020)MathSciNetMATHCrossRef Li, L., Li, Z., Liu, S., Li, H.: Rate control for video-based point cloud compression. IEEE Trans. Image Process. 29, 6237–6250 (2020)MathSciNetMATHCrossRef
21.
go back to reference Zhang, M., Zhou, W., Wei, H., Zhou, X., Duan, Z.: Frame level rate control algorithm based on GOP level quality dependency for low-delay hierarchical video coding. Signal Process. Image Commun. 88, 115964 (2020)CrossRef Zhang, M., Zhou, W., Wei, H., Zhou, X., Duan, Z.: Frame level rate control algorithm based on GOP level quality dependency for low-delay hierarchical video coding. Signal Process. Image Commun. 88, 115964 (2020)CrossRef
22.
go back to reference Guo, H., Zhu, C., Xu, M., Li, S.: Inter-block dependency-based CTU level rate control for HEVC. IEEE Trans. Broadcast. 66(1), 113–126 (2019)CrossRef Guo, H., Zhu, C., Xu, M., Li, S.: Inter-block dependency-based CTU level rate control for HEVC. IEEE Trans. Broadcast. 66(1), 113–126 (2019)CrossRef
23.
go back to reference Mallikarachchi, T., Talagala, D., Kodikara Arachchi, H., Hewage, C., Fernando, A.: A decoding-complexity and rate-controlled video-coding algorithm for HEVC. Future Internet 12(7), 120 (2020)CrossRef Mallikarachchi, T., Talagala, D., Kodikara Arachchi, H., Hewage, C., Fernando, A.: A decoding-complexity and rate-controlled video-coding algorithm for HEVC. Future Internet 12(7), 120 (2020)CrossRef
24.
go back to reference Zhao, Z., Xiong, S., Sun, W., He, X., Zhang, F.: An improved R-λ rate control model based on joint spatial-temporal domain information and HVS characteristics. Multimed. Tools Appl. 80, 345–366 (2020)CrossRef Zhao, Z., Xiong, S., Sun, W., He, X., Zhang, F.: An improved R-λ rate control model based on joint spatial-temporal domain information and HVS characteristics. Multimed. Tools Appl. 80, 345–366 (2020)CrossRef
25.
go back to reference Lim, W., Sim, D.: A perceptual rate control algorithm based on luminance adaptation for HEVC encoders. SIViP 14, 887–895 (2020)CrossRef Lim, W., Sim, D.: A perceptual rate control algorithm based on luminance adaptation for HEVC encoders. SIViP 14, 887–895 (2020)CrossRef
26.
go back to reference Zhou, M., Wei, X., Kwong, S., Jia, W., Fang, B.: Just noticeable distortion-based perceptual rate control in HEVC. IEEE Trans. Image Process. 29, 7603–7614 (2020)MATHCrossRef Zhou, M., Wei, X., Kwong, S., Jia, W., Fang, B.: Just noticeable distortion-based perceptual rate control in HEVC. IEEE Trans. Image Process. 29, 7603–7614 (2020)MATHCrossRef
27.
go back to reference Zhou, M., Wei, X., Wang, S., Kwong, S., Fong, C.-K., Wong, P.H., Yuen, W.Y., Gao, W.: SSIM-based global optimization for CTU-level rate control in HEVC. IEEE Trans. Multimed. 21(8), 1921–1933 (2019)CrossRef Zhou, M., Wei, X., Wang, S., Kwong, S., Fong, C.-K., Wong, P.H., Yuen, W.Y., Gao, W.: SSIM-based global optimization for CTU-level rate control in HEVC. IEEE Trans. Multimed. 21(8), 1921–1933 (2019)CrossRef
28.
go back to reference Zeng, H., Yang, A., Ngan, K.N., Wang, M.: Perceptual sensitivity-based rate control method for high efficiency video coding. Multimed. Tools Appl. 75(17), 10383–10396 (2016)CrossRef Zeng, H., Yang, A., Ngan, K.N., Wang, M.: Perceptual sensitivity-based rate control method for high efficiency video coding. Multimed. Tools Appl. 75(17), 10383–10396 (2016)CrossRef
29.
go back to reference Liu, D., Chen, Z., Liu, S., Wu, F.: Deep learning-based technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1267–1280 (2019)CrossRef Liu, D., Chen, Z., Liu, S., Wu, F.: Deep learning-based technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1267–1280 (2019)CrossRef
30.
go back to reference Zhu, L., Wang, G., Teng, G., Yang, Z., Zhang, L.: A Deep Learning Based Perceptual Bit Allocation Scheme on Conversational Videos for HEVC -Domain Rate Control. In: International Forum on Digital TV and Wireless Multimedia Communications 2017, pp. 515–524. Springer Zhu, L., Wang, G., Teng, G., Yang, Z., Zhang, L.: A Deep Learning Based Perceptual Bit Allocation Scheme on Conversational Videos for HEVC -Domain Rate Control. In: International Forum on Digital TV and Wireless Multimedia Communications 2017, pp. 515–524. Springer
31.
go back to reference Sun, X., Yang, X., Wang, S., Liu, M.: Content-aware rate control scheme for HEVC based on static and dynamic saliency detection. Neurocomputing 411, 393–405 (2020)CrossRef Sun, X., Yang, X., Wang, S., Liu, M.: Content-aware rate control scheme for HEVC based on static and dynamic saliency detection. Neurocomputing 411, 393–405 (2020)CrossRef
32.
go back to reference Marzuki, I., Lee, J., Sim, D.: Optimal CTU-level rate control model for HEVC based on deep convolutional features. IEEE Access 8, 165670–165682 (2020)CrossRef Marzuki, I., Lee, J., Sim, D.: Optimal CTU-level rate control model for HEVC based on deep convolutional features. IEEE Access 8, 165670–165682 (2020)CrossRef
33.
go back to reference Zhang, Z., Jing, T., Han, J., Xu, Y., Zhang, F.: A new rate control scheme for video coding based on region of interest. IEEE Access 5, 13677–13688 (2017)CrossRef Zhang, Z., Jing, T., Han, J., Xu, Y., Zhang, F.: A new rate control scheme for video coding based on region of interest. IEEE Access 5, 13677–13688 (2017)CrossRef
34.
go back to reference Gao, W., Kwong, S., Jia, Y.: Joint machine learning and game theory for rate control in high efficiency video coding. IEEE Trans. Image Process. 26(12), 6074–6089 (2017)MathSciNetMATHCrossRef Gao, W., Kwong, S., Jia, Y.: Joint machine learning and game theory for rate control in high efficiency video coding. IEEE Trans. Image Process. 26(12), 6074–6089 (2017)MathSciNetMATHCrossRef
35.
go back to reference Zupancic, I., Naccari, M., Mrak, M., Izquierdo, E.: Two-pass rate control for improved quality of experience in UHDTV delivery. IEEE J. Sel. Top. Signal Process. 11(1), 167–179 (2016)CrossRef Zupancic, I., Naccari, M., Mrak, M., Izquierdo, E.: Two-pass rate control for improved quality of experience in UHDTV delivery. IEEE J. Sel. Top. Signal Process. 11(1), 167–179 (2016)CrossRef
36.
go back to reference Wang, S., Rehman, A., Zeng, K., Wang, J., Wang, Z.: SSIM-motivated two-pass VBR coding for HEVC. IEEE Trans. Circuits Syst. Video Technol. 27(10), 2189–2203 (2016)CrossRef Wang, S., Rehman, A., Zeng, K., Wang, J., Wang, Z.: SSIM-motivated two-pass VBR coding for HEVC. IEEE Trans. Circuits Syst. Video Technol. 27(10), 2189–2203 (2016)CrossRef
37.
go back to reference Nakhaei, A., Rezaei, M.: Scene-level two-pass video rate controller for H.265/HEVC standard. Multimed. Tools Appl. 80, 7023–7038 (2020)CrossRef Nakhaei, A., Rezaei, M.: Scene-level two-pass video rate controller for H.265/HEVC standard. Multimed. Tools Appl. 80, 7023–7038 (2020)CrossRef
38.
go back to reference Fani, D., Rezaei, M.: Novel PID-fuzzy video rate controller for high-delay applications of the HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 28(6), 1379–1389 (2017)CrossRef Fani, D., Rezaei, M.: Novel PID-fuzzy video rate controller for high-delay applications of the HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 28(6), 1379–1389 (2017)CrossRef
39.
go back to reference Shojaei, M., Rezaei, M.: FJND-based fuzzy rate control of scalable video for streaming applications. Multimed. Tools Appl. 79, 13753–13773 (2020)CrossRef Shojaei, M., Rezaei, M.: FJND-based fuzzy rate control of scalable video for streaming applications. Multimed. Tools Appl. 79, 13753–13773 (2020)CrossRef
40.
go back to reference Yiming Li, Z.C.: Rate control for VVC JVET-K0390(ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11) (July 2018). Yiming Li, Z.C.: Rate control for VVC JVET-K0390(ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11) (July 2018).
41.
go back to reference Hyun, M.H., Lee, B., Kim, M.: A frame-level constant bit-rate control using recursive Bayesian estimation for versatile video coding. IEEE Access 8, 227255–227269 (2020)CrossRef Hyun, M.H., Lee, B., Kim, M.: A frame-level constant bit-rate control using recursive Bayesian estimation for versatile video coding. IEEE Access 8, 227255–227269 (2020)CrossRef
42.
go back to reference Raufmehr, F., Salehi, M.R., Abiri, E.: A frame-level MLP-based bit-rate controller for real-time video transmission using VVC standard. J. Real-Time Image Process. 18, 751–763 (2020)CrossRef Raufmehr, F., Salehi, M.R., Abiri, E.: A frame-level MLP-based bit-rate controller for real-time video transmission using VVC standard. J. Real-Time Image Process. 18, 751–763 (2020)CrossRef
43.
go back to reference Carlucho, I., De Paula, M., Villar, S.A., Acosta, G.G.: Incremental Q-learning strategy for adaptive PID control of mobile robots. Expert Syst. Appl. 80, 183–199 (2017)CrossRef Carlucho, I., De Paula, M., Villar, S.A., Acosta, G.G.: Incremental Q-learning strategy for adaptive PID control of mobile robots. Expert Syst. Appl. 80, 183–199 (2017)CrossRef
44.
go back to reference Lin, E., Chen, Q., Qi, X.: Deep reinforcement learning for imbalanced classification. Appl. Intell. 50, 2488–2502 (2020)CrossRef Lin, E., Chen, Q., Qi, X.: Deep reinforcement learning for imbalanced classification. Appl. Intell. 50, 2488–2502 (2020)CrossRef
45.
go back to reference Padakandla, S., Prabuchandran, K., Bhatnagar, S.: Reinforcement learning algorithm for non-stationary environments. Appl. Intell. 50(11), 3590–3606 (2020)CrossRef Padakandla, S., Prabuchandran, K., Bhatnagar, S.: Reinforcement learning algorithm for non-stationary environments. Appl. Intell. 50(11), 3590–3606 (2020)CrossRef
46.
go back to reference Lee, H., Kang, C., Park, Y.-I., Kim, N., Cha, S.W.: Online data-driven energy management of a hybrid electric vehicle using model-based Q-Learning. IEEE Access 8, 84444–84454 (2020)CrossRef Lee, H., Kang, C., Park, Y.-I., Kim, N., Cha, S.W.: Online data-driven energy management of a hybrid electric vehicle using model-based Q-Learning. IEEE Access 8, 84444–84454 (2020)CrossRef
47.
go back to reference Lingam, G., Rout, R.R., Somayajulu, D.V.: Adaptive deep Q-learning model for detecting social bots and influential users in online social networks. Appl. Intell. 49(11), 3947–3964 (2019)CrossRef Lingam, G., Rout, R.R., Somayajulu, D.V.: Adaptive deep Q-learning model for detecting social bots and influential users in online social networks. Appl. Intell. 49(11), 3947–3964 (2019)CrossRef
48.
go back to reference Bossen, F.: VTM common test conditions and software reference configurations for SDR video. Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29 JVET-T2010 (Oct 2020). Bossen, F.: VTM common test conditions and software reference configurations for SDR video. Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29 JVET-T2010 (Oct 2020).
Metadata
Title
Overcoming the practical restrictions in H.266/VVC-based video communication systems by a PI bit rate controller
Authors
Farhad Raufmehr
Mohammad Reza Salehi
Ebrahim Abiri
Publication date
07-05-2022
Publisher
Springer Berlin Heidelberg
Published in
Multimedia Systems / Issue 5/2022
Print ISSN: 0942-4962
Electronic ISSN: 1432-1882
DOI
https://doi.org/10.1007/s00530-022-00942-6

Other articles of this Issue 5/2022

Multimedia Systems 5/2022 Go to the issue