Skip to main content
Erschienen in: Multimedia Systems 5/2022

07.05.2022 | Regular Paper

Overcoming the practical restrictions in H.266/VVC-based video communication systems by a PI bit rate controller

verfasst von: Farhad Raufmehr, Mohammad Reza Salehi, Ebrahim Abiri

Erschienen in: Multimedia Systems | Ausgabe 5/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the limitations in the Versatile Video Coding (H.266/VVC)-based communication systems are overcome through a bit rate controller. The limitations include the bandwidth and the buffer size. The proposed controller is of the variable bit rate type. It controls the bit rate fluctuation and maintains the buffer fullness within the admissible boundaries. These are performed by manipulating the quantization parameter. The proportional-integral (PI) controllers are more accurate than the proportional ones. Hence, a PI scheme is employed in the design process. The encoder shows stochastic and non-linear behavior. Moreover, the analytical model of its behavior is unavailable. These challenges are tackled via dynamic programming. The control criterion is developed using the Q-learning algorithm. Experimental results show the proposed method controls the bit rate with an average error equal to 1.4%. It is worthy of noting that the proposed method satisfies the buffering constraints. The average provided quality level in the proposed method is 36.47 dB. This amount is higher than those of the conventional methods. The performance analysis shows the proposed scheme has the bit rate saving capability compared with other methods.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Garcia-Lucas, D., Cebrian-Marquez, G., Cuenca, P.: Rate-distortion/complexity analysis of HEVC, VVC and AV1 video codecs. Multimed. Tools Appl. 79(39), 29621–29638 (2020)CrossRef Garcia-Lucas, D., Cebrian-Marquez, G., Cuenca, P.: Rate-distortion/complexity analysis of HEVC, VVC and AV1 video codecs. Multimed. Tools Appl. 79(39), 29621–29638 (2020)CrossRef
2.
Zurück zum Zitat Battista, S., Conti, M., Orcioni, S.: Methodology for modeling and comparing video codecs: HEVC, EVC, and VVC. Electronics 9(10), 1579 (2020)CrossRef Battista, S., Conti, M., Orcioni, S.: Methodology for modeling and comparing video codecs: HEVC, EVC, and VVC. Electronics 9(10), 1579 (2020)CrossRef
3.
Zurück zum Zitat Bross, B.: General video coding technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30, 1226–1240 (2019)CrossRef Bross, B.: General video coding technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30, 1226–1240 (2019)CrossRef
4.
Zurück zum Zitat Xiu, X., Hanhart, P., He, Y., Ye, Y., Vanam, R., Lu, T., Pu, F., Yin, P.: A Unified video codec for SDR, HDR, and 360° video applications. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1296–1310 (2019)CrossRef Xiu, X., Hanhart, P., He, Y., Ye, Y., Vanam, R., Lu, T., Pu, F., Yin, P.: A Unified video codec for SDR, HDR, and 360° video applications. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1296–1310 (2019)CrossRef
5.
Zurück zum Zitat François, E., Segall, C.A., Tourapis, A.M., Yin, P., Rusanovskyy, D.: High dynamic range video coding technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1253–1266 (2019)CrossRef François, E., Segall, C.A., Tourapis, A.M., Yin, P., Rusanovskyy, D.: High dynamic range video coding technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1253–1266 (2019)CrossRef
6.
Zurück zum Zitat Ye, Y., Boyce, J.M., Hanhart, P.: Omnidirectional 360° video coding technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1241–1252 (2019)CrossRef Ye, Y., Boyce, J.M., Hanhart, P.: Omnidirectional 360° video coding technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1241–1252 (2019)CrossRef
7.
Zurück zum Zitat Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming using Function Approximators, vol. 39. CRC Press, Boca Raton (2010)MATH Busoniu, L., Babuska, R., De Schutter, B., Ernst, D.: Reinforcement Learning and Dynamic Programming using Function Approximators, vol. 39. CRC Press, Boca Raton (2010)MATH
8.
Zurück zum Zitat Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2020)MATH Alpaydin, E.: Introduction to Machine Learning. MIT Press, Cambridge (2020)MATH
9.
Zurück zum Zitat Wien, M.: High Efficiency Video Coding. Coding Tools and Specification, pp. 133–160. Springer, Berlin (2015) Wien, M.: High Efficiency Video Coding. Coding Tools and Specification, pp. 133–160. Springer, Berlin (2015)
10.
Zurück zum Zitat Choi, H., Yoo, J., Nam, J., Sim, D., Bajić, I.V.: Pixel-wise unified rate-quantization model for multi-level rate control. IEEE J. Sel. Top. Signal Process. 7(6), 1112–1123 (2013)CrossRef Choi, H., Yoo, J., Nam, J., Sim, D., Bajić, I.V.: Pixel-wise unified rate-quantization model for multi-level rate control. IEEE J. Sel. Top. Signal Process. 7(6), 1112–1123 (2013)CrossRef
11.
Zurück zum Zitat Lee, B., Kim, M., Nguyen, T.Q.: A frame-level rate control scheme based on texture and nontexture rate models for high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 24(3), 465–479 (2013)CrossRef Lee, B., Kim, M., Nguyen, T.Q.: A frame-level rate control scheme based on texture and nontexture rate models for high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 24(3), 465–479 (2013)CrossRef
12.
Zurück zum Zitat Seo, C.-W., Moon, J.-H., Han, J.-K.: Rate control for consistent objective quality in high efficiency video coding. IEEE Trans. Image Process. 22(6), 2442–2454 (2013)MathSciNetMATHCrossRef Seo, C.-W., Moon, J.-H., Han, J.-K.: Rate control for consistent objective quality in high efficiency video coding. IEEE Trans. Image Process. 22(6), 2442–2454 (2013)MathSciNetMATHCrossRef
13.
Zurück zum Zitat Fang, M., Han, Y., Wen, J.: Genetic algorithm based rate control for AV1. IEEE Signal Process. Lett. 27, 520–524 (2020)CrossRef Fang, M., Han, Y., Wen, J.: Genetic algorithm based rate control for AV1. IEEE Signal Process. Lett. 27, 520–524 (2020)CrossRef
14.
Zurück zum Zitat Wang, S., Ma, S., Wang, S., Zhao, D., Gao, W.: Rate-GOP based rate control for high efficiency video coding. IEEE J. Sel. Top. Signal Process. 7(6), 1101–1111 (2013)CrossRef Wang, S., Ma, S., Wang, S., Zhao, D., Gao, W.: Rate-GOP based rate control for high efficiency video coding. IEEE J. Sel. Top. Signal Process. 7(6), 1101–1111 (2013)CrossRef
15.
Zurück zum Zitat Yan, T., Ra, I.-H., Wen, H., Weng, M.-H., Zhang, Q., Che, Y.: CTU layer rate control algorithm in scene change video for free-viewpoint video. IEEE Access 8, 24549–24560 (2020)CrossRef Yan, T., Ra, I.-H., Wen, H., Weng, M.-H., Zhang, Q., Che, Y.: CTU layer rate control algorithm in scene change video for free-viewpoint video. IEEE Access 8, 24549–24560 (2020)CrossRef
16.
Zurück zum Zitat Li, B., Li, H., Li, L., Zhang, J.: Domain rate control algorithm for high efficiency video coding. IEEE Trans. Image Process. 23(9), 3841–3854 (2014)MathSciNetMATHCrossRef Li, B., Li, H., Li, L., Zhang, J.: Domain rate control algorithm for high efficiency video coding. IEEE Trans. Image Process. 23(9), 3841–3854 (2014)MathSciNetMATHCrossRef
17.
Zurück zum Zitat Li, L., Li, B., Li, H., Chen, C.W.: Domain optimal bit allocation algorithm for high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 28(1), 130–142 (2016)CrossRef Li, L., Li, B., Li, H., Chen, C.W.: Domain optimal bit allocation algorithm for high efficiency video coding. IEEE Trans. Circuits Syst. Video Technol. 28(1), 130–142 (2016)CrossRef
18.
Zurück zum Zitat Mir, J., Talagala, D.S., Fernando, A., Husain, S.S.: Improved HEVC -domain rate control algorithm for HDR video. SIViP 13(3), 439–445 (2019)CrossRef Mir, J., Talagala, D.S., Fernando, A., Husain, S.S.: Improved HEVC -domain rate control algorithm for HDR video. SIViP 13(3), 439–445 (2019)CrossRef
19.
Zurück zum Zitat Li, L., Yan, N., Li, Z., Liu, S., Li, H.: Domain perceptual rate control for 360-degree video compression. IEEE J. Sel. Top. Signal Process. 14(1), 130–145 (2019)CrossRef Li, L., Yan, N., Li, Z., Liu, S., Li, H.: Domain perceptual rate control for 360-degree video compression. IEEE J. Sel. Top. Signal Process. 14(1), 130–145 (2019)CrossRef
20.
Zurück zum Zitat Li, L., Li, Z., Liu, S., Li, H.: Rate control for video-based point cloud compression. IEEE Trans. Image Process. 29, 6237–6250 (2020)MathSciNetMATHCrossRef Li, L., Li, Z., Liu, S., Li, H.: Rate control for video-based point cloud compression. IEEE Trans. Image Process. 29, 6237–6250 (2020)MathSciNetMATHCrossRef
21.
Zurück zum Zitat Zhang, M., Zhou, W., Wei, H., Zhou, X., Duan, Z.: Frame level rate control algorithm based on GOP level quality dependency for low-delay hierarchical video coding. Signal Process. Image Commun. 88, 115964 (2020)CrossRef Zhang, M., Zhou, W., Wei, H., Zhou, X., Duan, Z.: Frame level rate control algorithm based on GOP level quality dependency for low-delay hierarchical video coding. Signal Process. Image Commun. 88, 115964 (2020)CrossRef
22.
Zurück zum Zitat Guo, H., Zhu, C., Xu, M., Li, S.: Inter-block dependency-based CTU level rate control for HEVC. IEEE Trans. Broadcast. 66(1), 113–126 (2019)CrossRef Guo, H., Zhu, C., Xu, M., Li, S.: Inter-block dependency-based CTU level rate control for HEVC. IEEE Trans. Broadcast. 66(1), 113–126 (2019)CrossRef
23.
Zurück zum Zitat Mallikarachchi, T., Talagala, D., Kodikara Arachchi, H., Hewage, C., Fernando, A.: A decoding-complexity and rate-controlled video-coding algorithm for HEVC. Future Internet 12(7), 120 (2020)CrossRef Mallikarachchi, T., Talagala, D., Kodikara Arachchi, H., Hewage, C., Fernando, A.: A decoding-complexity and rate-controlled video-coding algorithm for HEVC. Future Internet 12(7), 120 (2020)CrossRef
24.
Zurück zum Zitat Zhao, Z., Xiong, S., Sun, W., He, X., Zhang, F.: An improved R-λ rate control model based on joint spatial-temporal domain information and HVS characteristics. Multimed. Tools Appl. 80, 345–366 (2020)CrossRef Zhao, Z., Xiong, S., Sun, W., He, X., Zhang, F.: An improved R-λ rate control model based on joint spatial-temporal domain information and HVS characteristics. Multimed. Tools Appl. 80, 345–366 (2020)CrossRef
25.
Zurück zum Zitat Lim, W., Sim, D.: A perceptual rate control algorithm based on luminance adaptation for HEVC encoders. SIViP 14, 887–895 (2020)CrossRef Lim, W., Sim, D.: A perceptual rate control algorithm based on luminance adaptation for HEVC encoders. SIViP 14, 887–895 (2020)CrossRef
26.
Zurück zum Zitat Zhou, M., Wei, X., Kwong, S., Jia, W., Fang, B.: Just noticeable distortion-based perceptual rate control in HEVC. IEEE Trans. Image Process. 29, 7603–7614 (2020)MATHCrossRef Zhou, M., Wei, X., Kwong, S., Jia, W., Fang, B.: Just noticeable distortion-based perceptual rate control in HEVC. IEEE Trans. Image Process. 29, 7603–7614 (2020)MATHCrossRef
27.
Zurück zum Zitat Zhou, M., Wei, X., Wang, S., Kwong, S., Fong, C.-K., Wong, P.H., Yuen, W.Y., Gao, W.: SSIM-based global optimization for CTU-level rate control in HEVC. IEEE Trans. Multimed. 21(8), 1921–1933 (2019)CrossRef Zhou, M., Wei, X., Wang, S., Kwong, S., Fong, C.-K., Wong, P.H., Yuen, W.Y., Gao, W.: SSIM-based global optimization for CTU-level rate control in HEVC. IEEE Trans. Multimed. 21(8), 1921–1933 (2019)CrossRef
28.
Zurück zum Zitat Zeng, H., Yang, A., Ngan, K.N., Wang, M.: Perceptual sensitivity-based rate control method for high efficiency video coding. Multimed. Tools Appl. 75(17), 10383–10396 (2016)CrossRef Zeng, H., Yang, A., Ngan, K.N., Wang, M.: Perceptual sensitivity-based rate control method for high efficiency video coding. Multimed. Tools Appl. 75(17), 10383–10396 (2016)CrossRef
29.
Zurück zum Zitat Liu, D., Chen, Z., Liu, S., Wu, F.: Deep learning-based technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1267–1280 (2019)CrossRef Liu, D., Chen, Z., Liu, S., Wu, F.: Deep learning-based technology in responses to the joint call for proposals on video compression with capability beyond HEVC. IEEE Trans. Circuits Syst. Video Technol. 30(5), 1267–1280 (2019)CrossRef
30.
Zurück zum Zitat Zhu, L., Wang, G., Teng, G., Yang, Z., Zhang, L.: A Deep Learning Based Perceptual Bit Allocation Scheme on Conversational Videos for HEVC -Domain Rate Control. In: International Forum on Digital TV and Wireless Multimedia Communications 2017, pp. 515–524. Springer Zhu, L., Wang, G., Teng, G., Yang, Z., Zhang, L.: A Deep Learning Based Perceptual Bit Allocation Scheme on Conversational Videos for HEVC -Domain Rate Control. In: International Forum on Digital TV and Wireless Multimedia Communications 2017, pp. 515–524. Springer
31.
Zurück zum Zitat Sun, X., Yang, X., Wang, S., Liu, M.: Content-aware rate control scheme for HEVC based on static and dynamic saliency detection. Neurocomputing 411, 393–405 (2020)CrossRef Sun, X., Yang, X., Wang, S., Liu, M.: Content-aware rate control scheme for HEVC based on static and dynamic saliency detection. Neurocomputing 411, 393–405 (2020)CrossRef
32.
Zurück zum Zitat Marzuki, I., Lee, J., Sim, D.: Optimal CTU-level rate control model for HEVC based on deep convolutional features. IEEE Access 8, 165670–165682 (2020)CrossRef Marzuki, I., Lee, J., Sim, D.: Optimal CTU-level rate control model for HEVC based on deep convolutional features. IEEE Access 8, 165670–165682 (2020)CrossRef
33.
Zurück zum Zitat Zhang, Z., Jing, T., Han, J., Xu, Y., Zhang, F.: A new rate control scheme for video coding based on region of interest. IEEE Access 5, 13677–13688 (2017)CrossRef Zhang, Z., Jing, T., Han, J., Xu, Y., Zhang, F.: A new rate control scheme for video coding based on region of interest. IEEE Access 5, 13677–13688 (2017)CrossRef
34.
Zurück zum Zitat Gao, W., Kwong, S., Jia, Y.: Joint machine learning and game theory for rate control in high efficiency video coding. IEEE Trans. Image Process. 26(12), 6074–6089 (2017)MathSciNetMATHCrossRef Gao, W., Kwong, S., Jia, Y.: Joint machine learning and game theory for rate control in high efficiency video coding. IEEE Trans. Image Process. 26(12), 6074–6089 (2017)MathSciNetMATHCrossRef
35.
Zurück zum Zitat Zupancic, I., Naccari, M., Mrak, M., Izquierdo, E.: Two-pass rate control for improved quality of experience in UHDTV delivery. IEEE J. Sel. Top. Signal Process. 11(1), 167–179 (2016)CrossRef Zupancic, I., Naccari, M., Mrak, M., Izquierdo, E.: Two-pass rate control for improved quality of experience in UHDTV delivery. IEEE J. Sel. Top. Signal Process. 11(1), 167–179 (2016)CrossRef
36.
Zurück zum Zitat Wang, S., Rehman, A., Zeng, K., Wang, J., Wang, Z.: SSIM-motivated two-pass VBR coding for HEVC. IEEE Trans. Circuits Syst. Video Technol. 27(10), 2189–2203 (2016)CrossRef Wang, S., Rehman, A., Zeng, K., Wang, J., Wang, Z.: SSIM-motivated two-pass VBR coding for HEVC. IEEE Trans. Circuits Syst. Video Technol. 27(10), 2189–2203 (2016)CrossRef
37.
Zurück zum Zitat Nakhaei, A., Rezaei, M.: Scene-level two-pass video rate controller for H.265/HEVC standard. Multimed. Tools Appl. 80, 7023–7038 (2020)CrossRef Nakhaei, A., Rezaei, M.: Scene-level two-pass video rate controller for H.265/HEVC standard. Multimed. Tools Appl. 80, 7023–7038 (2020)CrossRef
38.
Zurück zum Zitat Fani, D., Rezaei, M.: Novel PID-fuzzy video rate controller for high-delay applications of the HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 28(6), 1379–1389 (2017)CrossRef Fani, D., Rezaei, M.: Novel PID-fuzzy video rate controller for high-delay applications of the HEVC standard. IEEE Trans. Circuits Syst. Video Technol. 28(6), 1379–1389 (2017)CrossRef
39.
Zurück zum Zitat Shojaei, M., Rezaei, M.: FJND-based fuzzy rate control of scalable video for streaming applications. Multimed. Tools Appl. 79, 13753–13773 (2020)CrossRef Shojaei, M., Rezaei, M.: FJND-based fuzzy rate control of scalable video for streaming applications. Multimed. Tools Appl. 79, 13753–13773 (2020)CrossRef
40.
Zurück zum Zitat Yiming Li, Z.C.: Rate control for VVC JVET-K0390(ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11) (July 2018). Yiming Li, Z.C.: Rate control for VVC JVET-K0390(ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11) (July 2018).
41.
Zurück zum Zitat Hyun, M.H., Lee, B., Kim, M.: A frame-level constant bit-rate control using recursive Bayesian estimation for versatile video coding. IEEE Access 8, 227255–227269 (2020)CrossRef Hyun, M.H., Lee, B., Kim, M.: A frame-level constant bit-rate control using recursive Bayesian estimation for versatile video coding. IEEE Access 8, 227255–227269 (2020)CrossRef
42.
Zurück zum Zitat Raufmehr, F., Salehi, M.R., Abiri, E.: A frame-level MLP-based bit-rate controller for real-time video transmission using VVC standard. J. Real-Time Image Process. 18, 751–763 (2020)CrossRef Raufmehr, F., Salehi, M.R., Abiri, E.: A frame-level MLP-based bit-rate controller for real-time video transmission using VVC standard. J. Real-Time Image Process. 18, 751–763 (2020)CrossRef
43.
Zurück zum Zitat Carlucho, I., De Paula, M., Villar, S.A., Acosta, G.G.: Incremental Q-learning strategy for adaptive PID control of mobile robots. Expert Syst. Appl. 80, 183–199 (2017)CrossRef Carlucho, I., De Paula, M., Villar, S.A., Acosta, G.G.: Incremental Q-learning strategy for adaptive PID control of mobile robots. Expert Syst. Appl. 80, 183–199 (2017)CrossRef
44.
Zurück zum Zitat Lin, E., Chen, Q., Qi, X.: Deep reinforcement learning for imbalanced classification. Appl. Intell. 50, 2488–2502 (2020)CrossRef Lin, E., Chen, Q., Qi, X.: Deep reinforcement learning for imbalanced classification. Appl. Intell. 50, 2488–2502 (2020)CrossRef
45.
Zurück zum Zitat Padakandla, S., Prabuchandran, K., Bhatnagar, S.: Reinforcement learning algorithm for non-stationary environments. Appl. Intell. 50(11), 3590–3606 (2020)CrossRef Padakandla, S., Prabuchandran, K., Bhatnagar, S.: Reinforcement learning algorithm for non-stationary environments. Appl. Intell. 50(11), 3590–3606 (2020)CrossRef
46.
Zurück zum Zitat Lee, H., Kang, C., Park, Y.-I., Kim, N., Cha, S.W.: Online data-driven energy management of a hybrid electric vehicle using model-based Q-Learning. IEEE Access 8, 84444–84454 (2020)CrossRef Lee, H., Kang, C., Park, Y.-I., Kim, N., Cha, S.W.: Online data-driven energy management of a hybrid electric vehicle using model-based Q-Learning. IEEE Access 8, 84444–84454 (2020)CrossRef
47.
Zurück zum Zitat Lingam, G., Rout, R.R., Somayajulu, D.V.: Adaptive deep Q-learning model for detecting social bots and influential users in online social networks. Appl. Intell. 49(11), 3947–3964 (2019)CrossRef Lingam, G., Rout, R.R., Somayajulu, D.V.: Adaptive deep Q-learning model for detecting social bots and influential users in online social networks. Appl. Intell. 49(11), 3947–3964 (2019)CrossRef
48.
Zurück zum Zitat Bossen, F.: VTM common test conditions and software reference configurations for SDR video. Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29 JVET-T2010 (Oct 2020). Bossen, F.: VTM common test conditions and software reference configurations for SDR video. Joint Video Experts Team (JVET) of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29 JVET-T2010 (Oct 2020).
Metadaten
Titel
Overcoming the practical restrictions in H.266/VVC-based video communication systems by a PI bit rate controller
verfasst von
Farhad Raufmehr
Mohammad Reza Salehi
Ebrahim Abiri
Publikationsdatum
07.05.2022
Verlag
Springer Berlin Heidelberg
Erschienen in
Multimedia Systems / Ausgabe 5/2022
Print ISSN: 0942-4962
Elektronische ISSN: 1432-1882
DOI
https://doi.org/10.1007/s00530-022-00942-6

Weitere Artikel der Ausgabe 5/2022

Multimedia Systems 5/2022 Zur Ausgabe

Neuer Inhalt