Skip to main content
Top
Published in: Polymer Bulletin 12/2020

03-01-2020 | Review Paper

PAMAM dendrimer-based macromolecules and their potential applications: recent advances in theoretical studies

Authors: S. Mahmood Fatemi, Seyed Jamilaldin Fatemi, Zeynab Abbasi

Published in: Polymer Bulletin | Issue 12/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The dendrimer has a high degree of geometric symmetry, a precise and controllable molecular size, a large number of surface-active functional groups, a rich cavity inside the molecule, and a controlled molecular chain growth. The unique structural properties of the above-mentioned macromolecules have made it a research hot spot in many fields. Molecular simulation technology, as a new scientific research method, plays an important role in the basic theory and applied research of dendrimers. This paper reviews the basic progress of molecular simulation technology in the field of dendrimers in recent years, including the application of dendrimers in medicine, DNA, pharmaceutical carriers, proteins, amino acids, and so on.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Buhleier E, Wehner W, Vögtle F (1978) ‘Cascade’- and ‘Nonskid-chain-like’ syntheses of molecular cavity topologies. Chem Inf 9 25:228 Buhleier E, Wehner W, Vögtle F (1978) ‘Cascade’- and ‘Nonskid-chain-like’ syntheses of molecular cavity topologies. Chem Inf 9 25:228
2.
go back to reference Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S et al (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117 Tomalia DA, Baker H, Dewald J, Hall M, Kallos G, Martin S et al (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117
3.
go back to reference Tomalia DA, Fréchet JM (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci Part A Polym Chem 40:2719–2728 Tomalia DA, Fréchet JM (2002) Discovery of dendrimers and dendritic polymers: a brief historical perspective. J Polym Sci Part A Polym Chem 40:2719–2728
4.
go back to reference Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW et al (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9:247PubMedPubMedCentral Abbasi E, Aval SF, Akbarzadeh A, Milani M, Nasrabadi HT, Joo SW et al (2014) Dendrimers: synthesis, applications, and properties. Nanoscale Res Lett 9:247PubMedPubMedCentral
5.
go back to reference Lee CC, MacKay JA, Fréchet JM, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517PubMed Lee CC, MacKay JA, Fréchet JM, Szoka FC (2005) Designing dendrimers for biological applications. Nat Biotechnol 23:1517PubMed
6.
go back to reference Vögtle F, Richardt G, Werner N (2009) Dendrimer chemistry: concepts, syntheses, properties, applications. Wiley, Hoboken Vögtle F, Richardt G, Werner N (2009) Dendrimer chemistry: concepts, syntheses, properties, applications. Wiley, Hoboken
7.
go back to reference Tang Z (2017) Research progress on synthesis and characteristic about dendrimers. In: IOP conference series: earth and environmental science. IOP Publishing, vol 100, p 012024 Tang Z (2017) Research progress on synthesis and characteristic about dendrimers. In: IOP conference series: earth and environmental science. IOP Publishing, vol 100, p 012024
8.
go back to reference Cloninger MJ (2002) Biological applications of dendrimers. Curr Opin Chem Biol 6:742–748PubMed Cloninger MJ (2002) Biological applications of dendrimers. Curr Opin Chem Biol 6:742–748PubMed
9.
go back to reference Mintzer MA, Grinstaff MW (2011) Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40:173–190PubMed Mintzer MA, Grinstaff MW (2011) Biomedical applications of dendrimers: a tutorial. Chem Soc Rev 40:173–190PubMed
10.
go back to reference Noriega-Luna B, Godínez LA, Rodríguez FJ, Rodríguez A, Larrea G, Sosa-Ferreyra C et al (2014) Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater 2014:39 Noriega-Luna B, Godínez LA, Rodríguez FJ, Rodríguez A, Larrea G, Sosa-Ferreyra C et al (2014) Applications of dendrimers in drug delivery agents, diagnosis, therapy, and detection. J Nanomater 2014:39
11.
go back to reference Wolinsky JB, Grinstaff MW (2008) Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 60:1037–1055PubMed Wolinsky JB, Grinstaff MW (2008) Therapeutic and diagnostic applications of dendrimers for cancer treatment. Adv Drug Deliv Rev 60:1037–1055PubMed
12.
go back to reference Cheng Y, Wang J, Rao T, He X, Xu T (2008) Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. Front Biosci 13:1447–1471PubMed Cheng Y, Wang J, Rao T, He X, Xu T (2008) Pharmaceutical applications of dendrimers: promising nanocarriers for drug delivery. Front Biosci 13:1447–1471PubMed
13.
go back to reference Joshi N, Grinstaff M (2008) Applications of dendrimers in tissue engineering. Curr Top Med Chem 8:1225–1236PubMed Joshi N, Grinstaff M (2008) Applications of dendrimers in tissue engineering. Curr Top Med Chem 8:1225–1236PubMed
14.
go back to reference Somani S, Dufès C (2014) Applications of dendrimers for brain delivery and cancer therapy. Nanomedicine 9:2403–2414PubMed Somani S, Dufès C (2014) Applications of dendrimers for brain delivery and cancer therapy. Nanomedicine 9:2403–2414PubMed
15.
go back to reference Astruc D, Ornelas C, Ruiz J (2008) Metallocenyl dendrimers and their applications in molecular electronics, sensing, and catalysis. Acc Chem Res 41:841–856PubMed Astruc D, Ornelas C, Ruiz J (2008) Metallocenyl dendrimers and their applications in molecular electronics, sensing, and catalysis. Acc Chem Res 41:841–856PubMed
16.
go back to reference Niu Y, Crooks RM (2003) Dendrimer-encapsulated metal nanoparticles and their applications to catalysis. C R Chim 6:1049–1059 Niu Y, Crooks RM (2003) Dendrimer-encapsulated metal nanoparticles and their applications to catalysis. C R Chim 6:1049–1059
17.
go back to reference Astruc D, Ornelas C, Aranzaes JR (2008) Ferrocenyl-terminated dendrimers: design for applications in molecular electronics, molecular recognition and catalysis. J Inorg Organomet Polym Mater 18:4–17 Astruc D, Ornelas C, Aranzaes JR (2008) Ferrocenyl-terminated dendrimers: design for applications in molecular electronics, molecular recognition and catalysis. J Inorg Organomet Polym Mater 18:4–17
18.
go back to reference Bergamini G, Marchi E, Ceroni P (2011) Metal ion complexes of cyclam-cored dendrimers for molecular photonics. Coord Chem Rev 255:2458–2468 Bergamini G, Marchi E, Ceroni P (2011) Metal ion complexes of cyclam-cored dendrimers for molecular photonics. Coord Chem Rev 255:2458–2468
19.
go back to reference Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185PubMed Menjoge AR, Kannan RM, Tomalia DA (2010) Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today 15:171–185PubMed
20.
go back to reference Langereis S, Dirksen A, Hackeng TM, Van Genderen MH, Meijer E (2007) Dendrimers and magnetic resonance imaging. New J Chem 31:1152–1160 Langereis S, Dirksen A, Hackeng TM, Van Genderen MH, Meijer E (2007) Dendrimers and magnetic resonance imaging. New J Chem 31:1152–1160
21.
go back to reference Dufes C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202PubMed Dufes C, Uchegbu IF, Schätzlein AG (2005) Dendrimers in gene delivery. Adv Drug Deliv Rev 57:2177–2202PubMed
22.
go back to reference Yokoyama S, Otomo A, Nakahama T, Okuno Y, Mashiko S (2003) Dendrimers for optoelectronic applications. In: Schalley CA, Vögtle F (eds) Dendrimers V. Topics in current chemistry, vol 228. Springer, Berlin, Heidelberg, pp 205–226 Yokoyama S, Otomo A, Nakahama T, Okuno Y, Mashiko S (2003) Dendrimers for optoelectronic applications. In: Schalley CA, Vögtle F (eds) Dendrimers V. Topics in current chemistry, vol 228. Springer, Berlin, Heidelberg, pp 205–226
23.
go back to reference Kovvali AS, Sirkar K (2001) Dendrimer liquid membranes: CO2 separation from gas mixtures. Ind Eng Chem Res 40:2502–2511 Kovvali AS, Sirkar K (2001) Dendrimer liquid membranes: CO2 separation from gas mixtures. Ind Eng Chem Res 40:2502–2511
24.
go back to reference Szymański P, Markowicz M, Mikiciuk-Olasik E (2011) Nanotechnology in pharmaceutical and biomedical applications: dendrimers. Nano 6:509–539 Szymański P, Markowicz M, Mikiciuk-Olasik E (2011) Nanotechnology in pharmaceutical and biomedical applications: dendrimers. Nano 6:509–539
25.
go back to reference Caminade A-M, Ouali A, Laurent R, Turrin C-O, Majoral J-P (2016) Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coord Chem Rev 308:478–497 Caminade A-M, Ouali A, Laurent R, Turrin C-O, Majoral J-P (2016) Coordination chemistry with phosphorus dendrimers. Applications as catalysts, for materials, and in biology. Coord Chem Rev 308:478–497
26.
go back to reference Newkome GR, Yao Z, Baker GR, Gupta VK (1985) Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J Org Chem 50:2003–2004 Newkome GR, Yao Z, Baker GR, Gupta VK (1985) Micelles. Part 1. Cascade molecules: a new approach to micelles. A [27]-arborol. J Org Chem 50:2003–2004
27.
go back to reference Wiesler U-M, Berresheim A, Morgenroth F, Lieser G, Müllen K (2001) Divergent synthesis of polyphenylene dendrimers: the role of core and branching reagents upon size and shape. Macromolecules 34:187–199 Wiesler U-M, Berresheim A, Morgenroth F, Lieser G, Müllen K (2001) Divergent synthesis of polyphenylene dendrimers: the role of core and branching reagents upon size and shape. Macromolecules 34:187–199
28.
go back to reference Boris D, Rubinstein M (1996) A self-consistent mean field model of a starburst dendrimer: dense core vs dense shell. Macromolecules 29:7251–7260 Boris D, Rubinstein M (1996) A self-consistent mean field model of a starburst dendrimer: dense core vs dense shell. Macromolecules 29:7251–7260
29.
go back to reference Hawker CJ, Frechet JM (1990) Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 112:7638–7647 Hawker CJ, Frechet JM (1990) Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J Am Chem Soc 112:7638–7647
30.
go back to reference Grayson SM, Frechet JM (2001) Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev 101:3819–3868PubMed Grayson SM, Frechet JM (2001) Convergent dendrons and dendrimers: from synthesis to applications. Chem Rev 101:3819–3868PubMed
31.
go back to reference Twibanire JDAK, Grindley TB (2014) Polyester dendrimers: smart carriers for drug delivery. Polymers 6:179–213 Twibanire JDAK, Grindley TB (2014) Polyester dendrimers: smart carriers for drug delivery. Polymers 6:179–213
32.
go back to reference Roy R, Shiao TC (2015) Glyconanosynthons as powerful scaffolds and building blocks for the rapid construction of multifaceted, dense and chiral dendrimers. Chem Soc Rev 44:3924–3941PubMed Roy R, Shiao TC (2015) Glyconanosynthons as powerful scaffolds and building blocks for the rapid construction of multifaceted, dense and chiral dendrimers. Chem Soc Rev 44:3924–3941PubMed
33.
go back to reference Smith G, Chen R, Mapolie S (2003) The synthesis and catalytic activity of a first-generation poly (propylene imine) pyridylimine palladium metallodendrimer. J Organomet Chem 673:111–115 Smith G, Chen R, Mapolie S (2003) The synthesis and catalytic activity of a first-generation poly (propylene imine) pyridylimine palladium metallodendrimer. J Organomet Chem 673:111–115
34.
go back to reference Zheng Z-J, Chen J, Li Y-S (2004) The synthesis and catalytic activity of poly (bis (imino) pyridyl) iron (II) metallodendrimer. J Organomet Chem 689:3040–3045 Zheng Z-J, Chen J, Li Y-S (2004) The synthesis and catalytic activity of poly (bis (imino) pyridyl) iron (II) metallodendrimer. J Organomet Chem 689:3040–3045
35.
go back to reference Luo K, Li C, Li L, She W, Wang G, Gu Z (2012) Arginine functionalized peptide dendrimers as potential gene delivery vehicles. Biomaterials 33:4917–4927PubMed Luo K, Li C, Li L, She W, Wang G, Gu Z (2012) Arginine functionalized peptide dendrimers as potential gene delivery vehicles. Biomaterials 33:4917–4927PubMed
36.
go back to reference Caminade A-M, Ouali A, Laurent R, Turrin C-O, Majoral J-P (2015) The dendritic effect illustrated with phosphorus dendrimers. Chem Soc Rev 44:3890–3899PubMed Caminade A-M, Ouali A, Laurent R, Turrin C-O, Majoral J-P (2015) The dendritic effect illustrated with phosphorus dendrimers. Chem Soc Rev 44:3890–3899PubMed
37.
go back to reference Fukuzumi S, Saito K, Ohkubo K, Khoury T, Kashiwagi Y, Absalom MA et al (2011) Multiple photosynthetic reaction centres composed of supramolecular assemblies of zinc porphyrin dendrimers with a fullerene acceptor. Chem Commun 47:7980–7982 Fukuzumi S, Saito K, Ohkubo K, Khoury T, Kashiwagi Y, Absalom MA et al (2011) Multiple photosynthetic reaction centres composed of supramolecular assemblies of zinc porphyrin dendrimers with a fullerene acceptor. Chem Commun 47:7980–7982
38.
go back to reference Campos B, Algarra M, Alonso B, Casado C, Jiménez-Jiménez J, Rodríguez-Castellón E et al (2015) Fluorescent sensor for Cr(VI) based in functionalized silicon quantum dots with dendrimers. Talanta 144:862–867PubMed Campos B, Algarra M, Alonso B, Casado C, Jiménez-Jiménez J, Rodríguez-Castellón E et al (2015) Fluorescent sensor for Cr(VI) based in functionalized silicon quantum dots with dendrimers. Talanta 144:862–867PubMed
39.
go back to reference Lim J, Simanek EE (2012) Triazine dendrimers as drug delivery systems: from synthesis to therapy. Adv Drug Deliv Rev 64:826–835PubMed Lim J, Simanek EE (2012) Triazine dendrimers as drug delivery systems: from synthesis to therapy. Adv Drug Deliv Rev 64:826–835PubMed
40.
go back to reference Xu X, Jian Y, Li Y, Zhang X, Tu Z, Gu Z (2014) Bio-inspired supramolecular hybrid dendrimers self-assembled from low-generation peptide dendrons for highly efficient gene delivery and biological tracking. ACS Nano 8:9255–9264PubMed Xu X, Jian Y, Li Y, Zhang X, Tu Z, Gu Z (2014) Bio-inspired supramolecular hybrid dendrimers self-assembled from low-generation peptide dendrons for highly efficient gene delivery and biological tracking. ACS Nano 8:9255–9264PubMed
41.
go back to reference Najlah M, Freeman S, Khoder M, Attwood D, D’Emanuele A (2017) In vitro evaluation of third generation PAMAM dendrimer conjugates. Molecules 22:1661PubMedCentral Najlah M, Freeman S, Khoder M, Attwood D, D’Emanuele A (2017) In vitro evaluation of third generation PAMAM dendrimer conjugates. Molecules 22:1661PubMedCentral
42.
go back to reference Dvornic PR (2006) PAMAMOS: the first commercial silicon-containing dendrimers and their applications. J Polym Sci Part A Polym Chem 44:2755–2773 Dvornic PR (2006) PAMAMOS: the first commercial silicon-containing dendrimers and their applications. J Polym Sci Part A Polym Chem 44:2755–2773
43.
go back to reference Bhargava M, Bhargava S, Bhargava V (2017) P3. 02c-002 Mannosylated poly (propylene imine) dendrimer mediated lung delivery of anticancer bioactive: topic: targeted therapy. J Thorac Oncol 12:S1272 Bhargava M, Bhargava S, Bhargava V (2017) P3. 02c-002 Mannosylated poly (propylene imine) dendrimer mediated lung delivery of anticancer bioactive: topic: targeted therapy. J Thorac Oncol 12:S1272
44.
go back to reference Lataifeh A, Kraatz H-B (2019) Self-assembly of silver nanoparticles-low generation peptide dendrimer conjugates into poly-l-lysine. Mater Lett 254:353–356 Lataifeh A, Kraatz H-B (2019) Self-assembly of silver nanoparticles-low generation peptide dendrimer conjugates into poly-l-lysine. Mater Lett 254:353–356
45.
go back to reference Pande S, Crooks RM (2011) Analysis of poly (amidoamine) dendrimer structure by UV–Vis spectroscopy. Langmuir 27:9609–9613PubMed Pande S, Crooks RM (2011) Analysis of poly (amidoamine) dendrimer structure by UV–Vis spectroscopy. Langmuir 27:9609–9613PubMed
46.
go back to reference Castagnola M, Zuppi C, Rossetti DV, Vincenzoni F, Lupi A, Vitali A et al (2002) Characterization of dendrimer properties by capillary electrophoresis and their use as pseudostationary phases. Electrophoresis 23:1769–1778PubMed Castagnola M, Zuppi C, Rossetti DV, Vincenzoni F, Lupi A, Vitali A et al (2002) Characterization of dendrimer properties by capillary electrophoresis and their use as pseudostationary phases. Electrophoresis 23:1769–1778PubMed
47.
go back to reference Soininen AJ, Kasëmi E, Schlüter AD, Ikkala O, Ruokolainen J, Mezzenga R (2010) Self-assembly and induced circular dichroism in dendritic supramolecules with cholesteric pendant groups. J Am Chem Soc 132:10882–10890PubMed Soininen AJ, Kasëmi E, Schlüter AD, Ikkala O, Ruokolainen J, Mezzenga R (2010) Self-assembly and induced circular dichroism in dendritic supramolecules with cholesteric pendant groups. J Am Chem Soc 132:10882–10890PubMed
48.
go back to reference Appelhans D, Oertel U, Mazzeo R, Komber H, Hoffmann J, Weidner S et al (2009) Dense-shell glycodendrimers: UV/Vis and electron paramagnetic resonance study of metal ion complexation. Proc R Soc A Math Phys Eng Sci 466:1489–1513 Appelhans D, Oertel U, Mazzeo R, Komber H, Hoffmann J, Weidner S et al (2009) Dense-shell glycodendrimers: UV/Vis and electron paramagnetic resonance study of metal ion complexation. Proc R Soc A Math Phys Eng Sci 466:1489–1513
49.
go back to reference Chiu MH, Prenner EJ (2011) Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci 3:39PubMedPubMedCentral Chiu MH, Prenner EJ (2011) Differential scanning calorimetry: an invaluable tool for a detailed thermodynamic characterization of macromolecules and their interactions. J Pharm Bioallied Sci 3:39PubMedPubMedCentral
50.
go back to reference Pan Z, Xu M, Cheung EY, Harris KD, Constable EC, Housecroft CE (2006) Understanding the structural properties of a dendrimeric material directly from powder X-ray diffraction data. J Phys Chem B 110:11620–11623PubMed Pan Z, Xu M, Cheung EY, Harris KD, Constable EC, Housecroft CE (2006) Understanding the structural properties of a dendrimeric material directly from powder X-ray diffraction data. J Phys Chem B 110:11620–11623PubMed
51.
go back to reference Gautam SP, Gupta AK, Agrawal S, Sureka S (2012) Spectroscopic characterization of dendrimers. Int J Pharm Pharm Sci 4:77–80 Gautam SP, Gupta AK, Agrawal S, Sureka S (2012) Spectroscopic characterization of dendrimers. Int J Pharm Pharm Sci 4:77–80
52.
go back to reference Porcar L, Liu Y, Verduzco R, Hong K, Butler PD, Magid LJ et al (2008) Structural investigation of PAMAM dendrimers in aqueous solutions using small-angle neutron scattering: effect of generation. J Phys Chem B 112:14772–14778PubMed Porcar L, Liu Y, Verduzco R, Hong K, Butler PD, Magid LJ et al (2008) Structural investigation of PAMAM dendrimers in aqueous solutions using small-angle neutron scattering: effect of generation. J Phys Chem B 112:14772–14778PubMed
53.
go back to reference Mullen DG, Desai A, van Dongen MA, Barash M, Baker JR Jr, Banaszak Holl MM (2012) Best practices for purification and characterization of PAMAM dendrimer. Macromolecules 45:5316–5320PubMedPubMedCentral Mullen DG, Desai A, van Dongen MA, Barash M, Baker JR Jr, Banaszak Holl MM (2012) Best practices for purification and characterization of PAMAM dendrimer. Macromolecules 45:5316–5320PubMedPubMedCentral
54.
go back to reference Giordanengo R, Mazarin M, Wu J, Peng L, Charles L (2007) Propagation of structural deviations of poly (amidoamine) fan-shape dendrimers (generations 0–3) characterized by MALDI and electrospray mass spectrometry. Int J Mass Spectrom 266:62–75 Giordanengo R, Mazarin M, Wu J, Peng L, Charles L (2007) Propagation of structural deviations of poly (amidoamine) fan-shape dendrimers (generations 0–3) characterized by MALDI and electrospray mass spectrometry. Int J Mass Spectrom 266:62–75
55.
go back to reference Biricova V, Laznickova A (2009) Dendrimers: analytical characterization and applications. Bioorg Chem 37:185–192PubMed Biricova V, Laznickova A (2009) Dendrimers: analytical characterization and applications. Bioorg Chem 37:185–192PubMed
56.
go back to reference Zhou L, Russell DH, Zhao M, Crooks RM (2001) Characterization of poly (amidoamine) dendrimers and their complexes with Cu2+ by matrix-assisted laser desorption ionization mass spectrometry. Macromolecules 34:3567–3573 Zhou L, Russell DH, Zhao M, Crooks RM (2001) Characterization of poly (amidoamine) dendrimers and their complexes with Cu2+ by matrix-assisted laser desorption ionization mass spectrometry. Macromolecules 34:3567–3573
57.
go back to reference Najlah M, Freeman S, Attwood D, D’Emanuele A (2006) Synthesis, characterization and stability of dendrimer prodrugs. Int J Pharm 308:175–182PubMed Najlah M, Freeman S, Attwood D, D’Emanuele A (2006) Synthesis, characterization and stability of dendrimer prodrugs. Int J Pharm 308:175–182PubMed
58.
go back to reference Xu TH, Lu R, Qiu XP, Liu XL, Xue PC, Tan CH et al (2006) Synthesis and characterization of carbazole-based dendrimers with porphyrin cores. Eur J Org Chem 2006:4014–4020 Xu TH, Lu R, Qiu XP, Liu XL, Xue PC, Tan CH et al (2006) Synthesis and characterization of carbazole-based dendrimers with porphyrin cores. Eur J Org Chem 2006:4014–4020
59.
go back to reference Carr PL, Davies GR, Feast WJ, Stainton NM, Ward IM (1996) Dielectric and mechanical characterization of aryl ester dendrimer/PET blends. Polymer 37:2395–2401 Carr PL, Davies GR, Feast WJ, Stainton NM, Ward IM (1996) Dielectric and mechanical characterization of aryl ester dendrimer/PET blends. Polymer 37:2395–2401
60.
go back to reference Tintaru A, Ungaro R, Liu X, Chen C, Giordano L, Peng L et al (2015) Structural characterization of new defective molecules in poly (amidoamide) dendrimers by combining mass spectrometry and nuclear magnetic resonance. Anal Chim Acta 853:451–459PubMed Tintaru A, Ungaro R, Liu X, Chen C, Giordano L, Peng L et al (2015) Structural characterization of new defective molecules in poly (amidoamide) dendrimers by combining mass spectrometry and nuclear magnetic resonance. Anal Chim Acta 853:451–459PubMed
61.
go back to reference Sharma A, Gautam SP, Gupta AK (2011) Surface modified dendrimers: synthesis and characterization for cancer targeted drug delivery. Bioorg Med Chem 19:3341–3346PubMed Sharma A, Gautam SP, Gupta AK (2011) Surface modified dendrimers: synthesis and characterization for cancer targeted drug delivery. Bioorg Med Chem 19:3341–3346PubMed
62.
go back to reference Popescu M-C, Filip D, Vasile C, Cruz C, Rueff J, Marcos M et al (2006) Characterization by Fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of PAMAM dendrimer. J Phys Chem B 110:14198–14211PubMed Popescu M-C, Filip D, Vasile C, Cruz C, Rueff J, Marcos M et al (2006) Characterization by Fourier transform infrared spectroscopy (FT-IR) and 2D IR correlation spectroscopy of PAMAM dendrimer. J Phys Chem B 110:14198–14211PubMed
63.
go back to reference Li J, Piehler L, Qin D, Baker J, Tomalia D, Meier D (2000) Visualization and characterization of poly (amidoamine) dendrimers by atomic force microscopy. Langmuir 16:5613–5616 Li J, Piehler L, Qin D, Baker J, Tomalia D, Meier D (2000) Visualization and characterization of poly (amidoamine) dendrimers by atomic force microscopy. Langmuir 16:5613–5616
64.
go back to reference Shi X, Sun K, Balogh LP, Baker JR Jr (2006) Synthesis, characterization, and manipulation of dendrimer-stabilized iron sulfide nanoparticles. Nanotechnology 17:4554 Shi X, Sun K, Balogh LP, Baker JR Jr (2006) Synthesis, characterization, and manipulation of dendrimer-stabilized iron sulfide nanoparticles. Nanotechnology 17:4554
65.
go back to reference Xia C, Fan X, Locklin J, Advincula RC, Gies A, Nonidez W (2004) Characterization, supramolecular assembly, and nanostructures of thiophene dendrimers. J Am Chem Soc 126:8735–8743PubMed Xia C, Fan X, Locklin J, Advincula RC, Gies A, Nonidez W (2004) Characterization, supramolecular assembly, and nanostructures of thiophene dendrimers. J Am Chem Soc 126:8735–8743PubMed
66.
go back to reference Baytekin B, Werner N, Luppertz F, Engeser M, Brüggemann J, Bitter S et al (2006) How useful is mass spectrometry for the characterization of dendrimers?:“Fake defects” in the ESI and MALDI mass spectra of dendritic compounds. Int J Mass Spectrom 249:138–148 Baytekin B, Werner N, Luppertz F, Engeser M, Brüggemann J, Bitter S et al (2006) How useful is mass spectrometry for the characterization of dendrimers?:“Fake defects” in the ESI and MALDI mass spectra of dendritic compounds. Int J Mass Spectrom 249:138–148
67.
go back to reference Tosh DK, Yoo LS, Chinn M, Hong K, Kilbey SM, Barrett MO et al (2010) Polyamidoamine (PAMAM) dendrimer conjugates of “clickable” agonists of the A3 adenosine receptor and coactivation of the P2Y14 receptor by a tethered nucleotide. Bioconjug Chem 21:372–384PubMedPubMedCentral Tosh DK, Yoo LS, Chinn M, Hong K, Kilbey SM, Barrett MO et al (2010) Polyamidoamine (PAMAM) dendrimer conjugates of “clickable” agonists of the A3 adenosine receptor and coactivation of the P2Y14 receptor by a tethered nucleotide. Bioconjug Chem 21:372–384PubMedPubMedCentral
68.
go back to reference Åkesson A, Lind TK, Barker R, Hughes A, Cárdenas M (2012) Unraveling dendrimer translocation across cell membrane mimics. Langmuir 28:13025–13033PubMed Åkesson A, Lind TK, Barker R, Hughes A, Cárdenas M (2012) Unraveling dendrimer translocation across cell membrane mimics. Langmuir 28:13025–13033PubMed
69.
go back to reference Tomalia DA (2005) Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci 30:294–324 Tomalia DA (2005) Birth of a new macromolecular architecture: dendrimers as quantized building blocks for nanoscale synthetic polymer chemistry. Prog Polym Sci 30:294–324
70.
go back to reference Foroutan M, Fatemi SM, Darvishi M (2018) Formation and stability of water clusters at the molybdenum disulfide interface: a molecular dynamics simulation investigation. J Phys Condens Matter 30:415001PubMed Foroutan M, Fatemi SM, Darvishi M (2018) Formation and stability of water clusters at the molybdenum disulfide interface: a molecular dynamics simulation investigation. J Phys Condens Matter 30:415001PubMed
71.
go back to reference Foroutan M, Darvishi M, Fatemi SM, Babazadeh KH (2018) Water chain formation on rutile TiO2 (110) nanocrystal: a molecular dynamics simulation approach. J Mol Liq 250:344–352 Foroutan M, Darvishi M, Fatemi SM, Babazadeh KH (2018) Water chain formation on rutile TiO2 (110) nanocrystal: a molecular dynamics simulation approach. J Mol Liq 250:344–352
72.
go back to reference Foroutan M, Fatemi SM, Esmaeilian F (2017) A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation. Eur Phys J E 40:19PubMed Foroutan M, Fatemi SM, Esmaeilian F (2017) A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation. Eur Phys J E 40:19PubMed
73.
go back to reference Foroutan M, Darvishi M, Fatemi SM (2017) Structural and dynamical characterization of water on the Au (100) and graphene surfaces: a molecular dynamics simulation approach. Phys Rev E 96:033312PubMed Foroutan M, Darvishi M, Fatemi SM (2017) Structural and dynamical characterization of water on the Au (100) and graphene surfaces: a molecular dynamics simulation approach. Phys Rev E 96:033312PubMed
74.
go back to reference Fatemi SM, Foroutan M (2015) Study of dispersion of carbon nanotubes by Triton X-100 surfactant using molecular dynamics simulation. J Iran Chem Soc 12:1905–1913 Fatemi SM, Foroutan M (2015) Study of dispersion of carbon nanotubes by Triton X-100 surfactant using molecular dynamics simulation. J Iran Chem Soc 12:1905–1913
75.
go back to reference Miklis P, Çaǧin T, Goddard WA (1997) Dynamics of Bengal Rose encapsulated in the Meijer dendrimer box. J Am Chem Soc 119:7458–7462 Miklis P, Çaǧin T, Goddard WA (1997) Dynamics of Bengal Rose encapsulated in the Meijer dendrimer box. J Am Chem Soc 119:7458–7462
76.
go back to reference Ivanov AA, Jacobson KA (2008) Molecular modeling of a PAMAM-CGS21680 dendrimer bound to an A2A adenosine receptor homodimer. Bioorg Med Chem Lett 18:4312–4315PubMedPubMedCentral Ivanov AA, Jacobson KA (2008) Molecular modeling of a PAMAM-CGS21680 dendrimer bound to an A2A adenosine receptor homodimer. Bioorg Med Chem Lett 18:4312–4315PubMedPubMedCentral
77.
go back to reference Chasse TL, Sachdeva R, Li Q, Li Z, Petrie RJ, Gorman CB (2003) Structural effects on encapsulation as probed in redox-active core dendrimer isomers. J Am Chem Soc 125:8250–8254PubMed Chasse TL, Sachdeva R, Li Q, Li Z, Petrie RJ, Gorman CB (2003) Structural effects on encapsulation as probed in redox-active core dendrimer isomers. J Am Chem Soc 125:8250–8254PubMed
78.
go back to reference Barra PA, Barraza L, Jiménez VA, Gavín JA, Alderete JB (2014) Complexation of mefenamic acid by low-generation PAMAM dendrimers: insight from nmr spectroscopy studies and molecular dynamics simulations. Macromol Chem Phys 215:372–383 Barra PA, Barraza L, Jiménez VA, Gavín JA, Alderete JB (2014) Complexation of mefenamic acid by low-generation PAMAM dendrimers: insight from nmr spectroscopy studies and molecular dynamics simulations. Macromol Chem Phys 215:372–383
79.
go back to reference Caballero J, Poblete H, Navarro C, Alzate-Morales JH (2013) Association of nicotinic acid with a poly (amidoamine) dendrimer studied by molecular dynamics simulations. J Mol Graph Model 39:71–78PubMed Caballero J, Poblete H, Navarro C, Alzate-Morales JH (2013) Association of nicotinic acid with a poly (amidoamine) dendrimer studied by molecular dynamics simulations. J Mol Graph Model 39:71–78PubMed
80.
go back to reference Giri J, Diallo MS, Simpson AJ, Liu Y, Goddard WA III, Kumar R et al (2011) Interactions of poly (amidoamine) dendrimers with human serum albumin: binding constants and mechanisms. ACS Nano 5:3456–3468PubMed Giri J, Diallo MS, Simpson AJ, Liu Y, Goddard WA III, Kumar R et al (2011) Interactions of poly (amidoamine) dendrimers with human serum albumin: binding constants and mechanisms. ACS Nano 5:3456–3468PubMed
81.
go back to reference Maingi V, Kumar MVS, Maiti PK (2012) PAMAM dendrimer–drug interactions: effect of pH on the binding and release pattern. J Phys Chem B 116:4370–4376PubMed Maingi V, Kumar MVS, Maiti PK (2012) PAMAM dendrimer–drug interactions: effect of pH on the binding and release pattern. J Phys Chem B 116:4370–4376PubMed
82.
go back to reference Tanis I, Karatasos K (2009) Association of a weakly acidic anti-inflammatory drug (ibuprofen) with a poly (amidoamine) dendrimer as studied by molecular dynamics simulations. J Phys Chem B 113:10984–10993PubMed Tanis I, Karatasos K (2009) Association of a weakly acidic anti-inflammatory drug (ibuprofen) with a poly (amidoamine) dendrimer as studied by molecular dynamics simulations. J Phys Chem B 113:10984–10993PubMed
83.
go back to reference Zhang F-D, Liu Y, Xu J-C, Li S-J, Wang X-N, Sun Y et al (2015) Binding and conformation of dendrimer-based drug delivery systems: a molecular dynamics study. Adv Manuf 3:221–231 Zhang F-D, Liu Y, Xu J-C, Li S-J, Wang X-N, Sun Y et al (2015) Binding and conformation of dendrimer-based drug delivery systems: a molecular dynamics study. Adv Manuf 3:221–231
84.
go back to reference Maiti PK, Bagchi B (2006) Structure and dynamics of DNA—dendrimer complexation: role of counterions, water, and base pair sequence. Nano Lett 6:2478–2485PubMed Maiti PK, Bagchi B (2006) Structure and dynamics of DNA—dendrimer complexation: role of counterions, water, and base pair sequence. Nano Lett 6:2478–2485PubMed
85.
go back to reference Nandy B, Maiti PK (2010) DNA compaction by a dendrimer. J Phys Chem B 115:217–230PubMed Nandy B, Maiti PK (2010) DNA compaction by a dendrimer. J Phys Chem B 115:217–230PubMed
86.
go back to reference Yu S, Larson RG (2014) Monte-Carlo simulations of PAMAM dendrimer–DNA interactions. Soft Matter 10:5325–5336 Yu S, Larson RG (2014) Monte-Carlo simulations of PAMAM dendrimer–DNA interactions. Soft Matter 10:5325–5336
87.
go back to reference Márquez-Miranda V, Camarada MB, Araya-Durán I, Varas-Concha I, Almonacid DE, González-Nilo FD (2015) Biomimetics: from bioinformatics to rational design of dendrimers as gene carriers. PLoS ONE 10:e0138392PubMedPubMedCentral Márquez-Miranda V, Camarada MB, Araya-Durán I, Varas-Concha I, Almonacid DE, González-Nilo FD (2015) Biomimetics: from bioinformatics to rational design of dendrimers as gene carriers. PLoS ONE 10:e0138392PubMedPubMedCentral
88.
go back to reference Márquez-Miranda V, Peñaloza JP, Araya-Durán I, Reyes R, Vidaurre S, Romero V et al (2016) Effect of terminal groups of dendrimers in the complexation with antisense oligonucleotides and cell uptake. Nanoscale Res Lett 11:66PubMedPubMedCentral Márquez-Miranda V, Peñaloza JP, Araya-Durán I, Reyes R, Vidaurre S, Romero V et al (2016) Effect of terminal groups of dendrimers in the complexation with antisense oligonucleotides and cell uptake. Nanoscale Res Lett 11:66PubMedPubMedCentral
89.
go back to reference Pavan GM, Mintzer MA, Simanek EE, Merkel OM, Kissel T, Danani A (2010) Computational insights into the interactions between DNA and siRNA with “rigid” and “flexible” triazine dendrimers. Macromolecules 11:721–730 Pavan GM, Mintzer MA, Simanek EE, Merkel OM, Kissel T, Danani A (2010) Computational insights into the interactions between DNA and siRNA with “rigid” and “flexible” triazine dendrimers. Macromolecules 11:721–730
90.
go back to reference Ainalem M-L, Nylander T (2011) DNA condensation using cationic dendrimers—morphology and supramolecular structure of formed aggregates. Soft Matter 7:4577–4594 Ainalem M-L, Nylander T (2011) DNA condensation using cationic dendrimers—morphology and supramolecular structure of formed aggregates. Soft Matter 7:4577–4594
91.
go back to reference Zhong T, Ai P, Zhou J (2011) Structures and properties of PAMAM dendrimer: a multi-scale simulation study. Fluid Phase Equilib 302:43–47 Zhong T, Ai P, Zhou J (2011) Structures and properties of PAMAM dendrimer: a multi-scale simulation study. Fluid Phase Equilib 302:43–47
92.
go back to reference Yang L, da Rocha SR (2014) PEGylated, NH2-terminated PAMAM dendrimers: a microscopic view from atomistic computer simulations. Mol Pharm 11:1459–1470PubMed Yang L, da Rocha SR (2014) PEGylated, NH2-terminated PAMAM dendrimers: a microscopic view from atomistic computer simulations. Mol Pharm 11:1459–1470PubMed
93.
go back to reference Lin X, Bai T, Zuo YY, Gu N (2014) Promote potential applications of nanoparticles as respiratory drug carrier: insights from molecular dynamics simulations. Nanoscale 6:2759–2767PubMed Lin X, Bai T, Zuo YY, Gu N (2014) Promote potential applications of nanoparticles as respiratory drug carrier: insights from molecular dynamics simulations. Nanoscale 6:2759–2767PubMed
94.
go back to reference Maiti PK, Çaǧın T, Wang G, Goddard WA (2004) Structure of PAMAM dendrimers: generations 1 through 11. Macromolecules 37:6236–6254 Maiti PK, Çaǧın T, Wang G, Goddard WA (2004) Structure of PAMAM dendrimers: generations 1 through 11. Macromolecules 37:6236–6254
95.
go back to reference Charles S, Vasanthan N, Kwon D, Sekosan G, Ghosh S (2012) Surface modification of poly (amidoamine)(PAMAM) dendrimer as antimicrobial agents. Tetrahedron Lett 53:6670–6675PubMedPubMedCentral Charles S, Vasanthan N, Kwon D, Sekosan G, Ghosh S (2012) Surface modification of poly (amidoamine)(PAMAM) dendrimer as antimicrobial agents. Tetrahedron Lett 53:6670–6675PubMedPubMedCentral
96.
go back to reference Ding H-M, Tian W-D, Ma Y-Q (2012) Designing nanoparticle translocation through membranes by computer simulations. ACS Nano 6:1230–1238PubMed Ding H-M, Tian W-D, Ma Y-Q (2012) Designing nanoparticle translocation through membranes by computer simulations. ACS Nano 6:1230–1238PubMed
97.
go back to reference Tu CK, Chen K, Tian WD, Ma YQ (2013) Computational investigations of a peptide-modified dendrimer interacting with lipid membranes. Macromol Rapid Commun 34:1237–1242PubMed Tu CK, Chen K, Tian WD, Ma YQ (2013) Computational investigations of a peptide-modified dendrimer interacting with lipid membranes. Macromol Rapid Commun 34:1237–1242PubMed
98.
go back to reference Ma Y-Q (2012) pH-responsive dendrimers interacting with lipid membranes. Soft Matter 8:2627–2632 Ma Y-Q (2012) pH-responsive dendrimers interacting with lipid membranes. Soft Matter 8:2627–2632
99.
go back to reference Lyulin SV, Vattulainen I, Gurtovenko AA (2008) Complexes comprised of charged dendrimers, linear polyelectrolytes, and counterions: insight through coarse-grained molecular dynamics simulations. Macromolecules 41:4961–4968 Lyulin SV, Vattulainen I, Gurtovenko AA (2008) Complexes comprised of charged dendrimers, linear polyelectrolytes, and counterions: insight through coarse-grained molecular dynamics simulations. Macromolecules 41:4961–4968
100.
go back to reference Lyulin SV, Evers L, van der Schoot P, Darinskii AA, Lyulin AV, Michels M (2004) Effect of solvent quality and electrostatic interactions on size and structure of dendrimers. Brownian dynamics simulation and mean-field theory. Macromolecules 37:3049–3063 Lyulin SV, Evers L, van der Schoot P, Darinskii AA, Lyulin AV, Michels M (2004) Effect of solvent quality and electrostatic interactions on size and structure of dendrimers. Brownian dynamics simulation and mean-field theory. Macromolecules 37:3049–3063
101.
go back to reference Lyulin SV, Darinskii AA, Lyulin AV, Michels M (2004) Computer simulation of the dynamics of neutral and charged dendrimers. Macromolecules 37:4676–4685 Lyulin SV, Darinskii AA, Lyulin AV, Michels M (2004) Computer simulation of the dynamics of neutral and charged dendrimers. Macromolecules 37:4676–4685
102.
go back to reference Tian W-D, Ma Y-Q (2010) Complexation of a linear polyelectrolyte with a charged dendrimer: polyelectrolyte stiffness effects. Macromolecules 43:1575–1582 Tian W-D, Ma Y-Q (2010) Complexation of a linear polyelectrolyte with a charged dendrimer: polyelectrolyte stiffness effects. Macromolecules 43:1575–1582
103.
go back to reference Wang Y-L, Lu Z-Y, Laaksonen A (2012) Specific binding structures of dendrimers on lipid bilayer membranes. Phys Chem Chem Phys 14:8348–8359PubMed Wang Y-L, Lu Z-Y, Laaksonen A (2012) Specific binding structures of dendrimers on lipid bilayer membranes. Phys Chem Chem Phys 14:8348–8359PubMed
104.
go back to reference Yan L-T, Yu X (2009) Charged dendrimers on lipid bilayer membranes: insight through dissipative particle dynamics simulations. Macromolecules 42:6277–6283 Yan L-T, Yu X (2009) Charged dendrimers on lipid bilayer membranes: insight through dissipative particle dynamics simulations. Macromolecules 42:6277–6283
105.
go back to reference Terao T, Nakayama T (2004) Molecular dynamics study of dendrimers: structure and effective interaction. Macromolecules 37:4686–4694 Terao T, Nakayama T (2004) Molecular dynamics study of dendrimers: structure and effective interaction. Macromolecules 37:4686–4694
106.
go back to reference Gurtovenko AA, Lyulin SV, Karttunen M, Vattulainen I (2006) Molecular dynamics study of charged dendrimers in salt-free solution: effect of counterions. J Chem Phys 124:094904 Gurtovenko AA, Lyulin SV, Karttunen M, Vattulainen I (2006) Molecular dynamics study of charged dendrimers in salt-free solution: effect of counterions. J Chem Phys 124:094904
107.
go back to reference Guo XD, Zhang LJ, Wu ZM, Qian Y (2010) Dissipative particle dynamics studies on microstructure of pH-sensitive micelles for sustained drug delivery. Macromolecules 43:7839–7844 Guo XD, Zhang LJ, Wu ZM, Qian Y (2010) Dissipative particle dynamics studies on microstructure of pH-sensitive micelles for sustained drug delivery. Macromolecules 43:7839–7844
108.
go back to reference Guo XD, Zhang LJ, Qian Y (2012) Systematic multiscale method for studying the structure–performance relationship of drug-delivery systems. Ind Eng Chem Res 51:4719–4730 Guo XD, Zhang LJ, Qian Y (2012) Systematic multiscale method for studying the structure–performance relationship of drug-delivery systems. Ind Eng Chem Res 51:4719–4730
109.
go back to reference Luo Z, Jiang J (2012) pH-sensitive drug loading/releasing in amphiphilic copolymer PAE–PEG: integrating molecular dynamics and dissipative particle dynamics simulations. J Control Release 162:185–193PubMed Luo Z, Jiang J (2012) pH-sensitive drug loading/releasing in amphiphilic copolymer PAE–PEG: integrating molecular dynamics and dissipative particle dynamics simulations. J Control Release 162:185–193PubMed
110.
go back to reference Maiti PK, Goddard WA (2006) Solvent quality changes the structure of G8 PAMAM dendrimer, a disagreement with some experimental interpretations. J Phys Chem B 110:25628–25632PubMed Maiti PK, Goddard WA (2006) Solvent quality changes the structure of G8 PAMAM dendrimer, a disagreement with some experimental interpretations. J Phys Chem B 110:25628–25632PubMed
111.
go back to reference Chen S, Pan M, Tian W (2014) Computational study of the interaction between PAMAM dendrimer and KALP peptide. Acta Polym Sin 8:1062–1069 Chen S, Pan M, Tian W (2014) Computational study of the interaction between PAMAM dendrimer and KALP peptide. Acta Polym Sin 8:1062–1069
112.
go back to reference Schneider CP, Shukla D, Trout BL (2011) Effects of solute–solute interactions on protein stability studied using various counterions and dendrimers. PLoS ONE 6:e27665PubMedPubMedCentral Schneider CP, Shukla D, Trout BL (2011) Effects of solute–solute interactions on protein stability studied using various counterions and dendrimers. PLoS ONE 6:e27665PubMedPubMedCentral
113.
go back to reference Rahimi A, Amjad-Iranagh S, Modarress H (2016) Molecular dynamics simulation of coarse-grained poly (l-lysine) dendrimers. J Mol Model 22:59PubMed Rahimi A, Amjad-Iranagh S, Modarress H (2016) Molecular dynamics simulation of coarse-grained poly (l-lysine) dendrimers. J Mol Model 22:59PubMed
114.
go back to reference Roberts BP, Scanlon MJ, Krippner GY, Chalmers DK (2009) Molecular dynamics of poly (l-lysine) dendrimers with naphthalene disulfonate caps. Macromolecules 42:2775–2783 Roberts BP, Scanlon MJ, Krippner GY, Chalmers DK (2009) Molecular dynamics of poly (l-lysine) dendrimers with naphthalene disulfonate caps. Macromolecules 42:2775–2783
115.
go back to reference Neelov I, Markelov D, Falkovich S, Ilyash MY, Okrugin B, Darinskii A (2013) Mathematical simulation of lysine dendrimers: temperature dependences. Polym Sci Ser C 55:154–161 Neelov I, Markelov D, Falkovich S, Ilyash MY, Okrugin B, Darinskii A (2013) Mathematical simulation of lysine dendrimers: temperature dependences. Polym Sci Ser C 55:154–161
116.
go back to reference Kavyani S, Amjad-Iranagh S, Modarress H (2014) Aqueous poly (amidoamine) dendrimer G3 and G4 generations with several interior cores at pHs 5 and 7: a molecular dynamics simulation study. J Phys Chem B 118:3257–3266PubMed Kavyani S, Amjad-Iranagh S, Modarress H (2014) Aqueous poly (amidoamine) dendrimer G3 and G4 generations with several interior cores at pHs 5 and 7: a molecular dynamics simulation study. J Phys Chem B 118:3257–3266PubMed
117.
go back to reference Lee H, Larson RG (2008) Lipid bilayer curvature and pore formation induced by charged linear polymers and dendrimers: the effect of molecular shape. J Phys Chem B 112:12279–12285PubMedPubMedCentral Lee H, Larson RG (2008) Lipid bilayer curvature and pore formation induced by charged linear polymers and dendrimers: the effect of molecular shape. J Phys Chem B 112:12279–12285PubMedPubMedCentral
118.
go back to reference Lee H, Choi JS, Larson RG (2011) Molecular dynamics studies of the size and internal structure of the PAMAM dendrimer grafted with arginine and histidine. Macromolecules 44:8681–8686 Lee H, Choi JS, Larson RG (2011) Molecular dynamics studies of the size and internal structure of the PAMAM dendrimer grafted with arginine and histidine. Macromolecules 44:8681–8686
119.
go back to reference Fatemi SM, Foroutan M (2016) Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation. J Nanostruct Chem 6:29–40 Fatemi SM, Foroutan M (2016) Recent developments concerning the dispersion of carbon nanotubes in surfactant/polymer systems by MD simulation. J Nanostruct Chem 6:29–40
120.
go back to reference Fatemi SM, Foroutan M (2014) Study of the dynamic behavior of boron nitride nanotube (BNNT) and triton surfactant complexes using molecular dynamics simulations. Adv Sci Eng Med 6:583–590 Fatemi SM, Foroutan M (2014) Study of the dynamic behavior of boron nitride nanotube (BNNT) and triton surfactant complexes using molecular dynamics simulations. Adv Sci Eng Med 6:583–590
121.
go back to reference Fatemi SM, Foroutan M (2015) Recent findings about ionic liquids mixtures obtained by molecular dynamics simulation. J Nanostruct Chem 5:243–253 Fatemi SM, Foroutan M (2015) Recent findings about ionic liquids mixtures obtained by molecular dynamics simulation. J Nanostruct Chem 5:243–253
122.
go back to reference Fatemi S, Foroutan M (2016) Review on carbon nanotubes and carbon nanotube bundles for gas/ion separation and water purification studied by molecular dynamics simulation. Int J Environ Sci Technol 13:457–470 Fatemi S, Foroutan M (2016) Review on carbon nanotubes and carbon nanotube bundles for gas/ion separation and water purification studied by molecular dynamics simulation. Int J Environ Sci Technol 13:457–470
123.
go back to reference Fatemi SM, Foroutan M (2014) Study of dispersion of boron nitride nanotubes by triton X-100 surfactant using molecular dynamics simulations. J Theor Comput Chem 13:1450063 Fatemi SM, Foroutan M (2014) Study of dispersion of boron nitride nanotubes by triton X-100 surfactant using molecular dynamics simulations. J Theor Comput Chem 13:1450063
124.
go back to reference Wolski P, Panczyk T (2019) Conformational properties of PAMAM dendrimers adsorbed on the gold surface studied by molecular dynamics simulation. J Phys Chem C 123:22603–22613 Wolski P, Panczyk T (2019) Conformational properties of PAMAM dendrimers adsorbed on the gold surface studied by molecular dynamics simulation. J Phys Chem C 123:22603–22613
125.
go back to reference Jin Y-J, Luo Y-J, Li G-P, Li J, Wang Y-F, Yang R-Q et al (2008) Application of photoluminescent CdS/PAMAM nanocomposites in fingerprint detection. Forensic Sci Int 179:34–38PubMed Jin Y-J, Luo Y-J, Li G-P, Li J, Wang Y-F, Yang R-Q et al (2008) Application of photoluminescent CdS/PAMAM nanocomposites in fingerprint detection. Forensic Sci Int 179:34–38PubMed
126.
go back to reference Yang H, Kao WJ (2006) Dendrimers for pharmaceutical and biomedical applications. J Biomater Sci Polym Ed 17:3–19PubMed Yang H, Kao WJ (2006) Dendrimers for pharmaceutical and biomedical applications. J Biomater Sci Polym Ed 17:3–19PubMed
127.
go back to reference Maiyalagan T (2009) Pt–Ru nanoparticles supported PAMAM dendrimer functionalized carbon nanofiber composite catalysts and their application to methanol oxidation. J Solid State Electrochem 13:1561–1566 Maiyalagan T (2009) Pt–Ru nanoparticles supported PAMAM dendrimer functionalized carbon nanofiber composite catalysts and their application to methanol oxidation. J Solid State Electrochem 13:1561–1566
128.
go back to reference Soršak E, Valh JV, Urek ŠK, Lobnik A (2015) Application of PAMAM dendrimers in optical sensing. Analyst 140:976–989PubMed Soršak E, Valh JV, Urek ŠK, Lobnik A (2015) Application of PAMAM dendrimers in optical sensing. Analyst 140:976–989PubMed
129.
go back to reference Domański D, Klajnert B, Bryszewska M (2004) Influence of PAMAM dendrimers on human red blood cells. Bioelectrochemistry 63:189–191PubMed Domański D, Klajnert B, Bryszewska M (2004) Influence of PAMAM dendrimers on human red blood cells. Bioelectrochemistry 63:189–191PubMed
Metadata
Title
PAMAM dendrimer-based macromolecules and their potential applications: recent advances in theoretical studies
Authors
S. Mahmood Fatemi
Seyed Jamilaldin Fatemi
Zeynab Abbasi
Publication date
03-01-2020
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 12/2020
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-019-03076-4

Other articles of this Issue 12/2020

Polymer Bulletin 12/2020 Go to the issue

Premium Partners