Skip to main content
Top
Published in: Microsystem Technologies 9/2018

07-04-2018 | Technical Paper

Paper-based resistive heater with accurate closed-loop temperature control for microfluidics paper-based analytical devices

Authors: Saeed Atabakhsh, Zahra Latifi Namin, Shahin Jafarabadi Ashtiani

Published in: Microsystem Technologies | Issue 9/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Accurate temperature controlling system is essential for temperature-sensitive applications of microfluidics technology. In this paper, for the first time, we implemented a low-cost temperature controlling system on paper to be used in paper-based microfluidics. A resistive heater was fabricated by screen-printing of conductive electric paint on paper substrate. The temperature was measured by a non-contact temperature sensor to suppress the effect of contact sensors’ thermal mass on the measured temperature. By utilizing PID controller in a closed-loop system, the accuracy of temperature is below 0.22 °C which is suitable for biological temperature-sensitive applications. A microfluidics paper-based analytical device (µPAD) is fabricated by screen-printing on filter paper and attached to the heater to be used as device under test. The fabrication and implementation procedures of the whole system including the heater, the temperature controller and the µPAD are very low-cost, fast and simple. The operation of the fabricated heater and the temperature controlling system were validated by a temperature-sensitive colorimetric test of cholesterol.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Abadian A, Jafarabadi-Ashtiani S (2014) Paper-based digital microfluidics. Microfluid Nanofluid 16:989–995CrossRef Abadian A, Jafarabadi-Ashtiani S (2014) Paper-based digital microfluidics. Microfluid Nanofluid 16:989–995CrossRef
go back to reference Bruzewicz DA, Reches M, Whitesides GM (2008) Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Anal Chem 80:3387–3392CrossRef Bruzewicz DA, Reches M, Whitesides GM (2008) Low-cost printing of poly (dimethylsiloxane) barriers to define microchannels in paper. Anal Chem 80:3387–3392CrossRef
go back to reference Busuioc C, Evanghelidis A, Galatanu A, Enculescu I (2016) Direct and contactless electrical control of temperature of paper and textile foldable substrates using electrospun metallic-web transparent electrodes. Sci Rep 6:34584CrossRef Busuioc C, Evanghelidis A, Galatanu A, Enculescu I (2016) Direct and contactless electrical control of temperature of paper and textile foldable substrates using electrospun metallic-web transparent electrodes. Sci Rep 6:34584CrossRef
go back to reference Chang Y-H, Lee G-B, Huang F-C, Chen Y-Y, Lin J-L (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdevice 8:215–225CrossRef Chang Y-H, Lee G-B, Huang F-C, Chen Y-Y, Lin J-L (2006) Integrated polymerase chain reaction chips utilizing digital microfluidics. Biomed Microdevice 8:215–225CrossRef
go back to reference Chauhan N, Pundir C (2011) Co-immobilization of cholesterol esterase, cholesterol oxidase and peroxidase on PVC strip for serum cholesterol determination. Anal Methods 3:1360–1365CrossRef Chauhan N, Pundir C (2011) Co-immobilization of cholesterol esterase, cholesterol oxidase and peroxidase on PVC strip for serum cholesterol determination. Anal Methods 3:1360–1365CrossRef
go back to reference Delaney JL, Hogan CF, Tian J, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83:1300–1306CrossRef Delaney JL, Hogan CF, Tian J, Shen W (2011) Electrogenerated chemiluminescence detection in paper-based microfluidic sensors. Anal Chem 83:1300–1306CrossRef
go back to reference Esquivel J, Del Campo F, de la Fuente JG, Rojas S, Sabate N (2014) Microfluidic fuel cells on paper: meeting the power needs of next generation lateral flow devices. Energy Environ Sci 7:1744–1749CrossRef Esquivel J, Del Campo F, de la Fuente JG, Rojas S, Sabate N (2014) Microfluidic fuel cells on paper: meeting the power needs of next generation lateral flow devices. Energy Environ Sci 7:1744–1749CrossRef
go back to reference Estes MD, Yang J, Duane B, Smith S, Brooks C, Nordquist A, Zenhausern F (2012) Optimization of multiplexed PCR on an integrated microfluidic forensic platform for rapid DNA analysis. Analyst 137:5510–5519CrossRef Estes MD, Yang J, Duane B, Smith S, Brooks C, Nordquist A, Zenhausern F (2012) Optimization of multiplexed PCR on an integrated microfluidic forensic platform for rapid DNA analysis. Analyst 137:5510–5519CrossRef
go back to reference Fan Y, Liu S, Gao K, Zhang Y (2018) Fully enclosed paper-based microfluidic devices using bio-compatible adhesive seals. Microsyst Technol 24:1783–1787CrossRef Fan Y, Liu S, Gao K, Zhang Y (2018) Fully enclosed paper-based microfluidic devices using bio-compatible adhesive seals. Microsyst Technol 24:1783–1787CrossRef
go back to reference Gilchrist KH, Giovangrandi L, Whittington RH, Kovacs GT (2005) Sensitivity of cell-based biosensors to environmental variables. Biosens Bioelectron 20:1397–1406CrossRef Gilchrist KH, Giovangrandi L, Whittington RH, Kovacs GT (2005) Sensitivity of cell-based biosensors to environmental variables. Biosens Bioelectron 20:1397–1406CrossRef
go back to reference Hagan KA, Reedy CR, Uchimoto ML, Basu D, Engel DA, Landers JP (2011) An integrated, valveless system for microfluidic purification and reverse transcription-PCR amplification of RNA for detection of infectious agents. Lab Chip 11:957–961CrossRef Hagan KA, Reedy CR, Uchimoto ML, Basu D, Engel DA, Landers JP (2011) An integrated, valveless system for microfluidic purification and reverse transcription-PCR amplification of RNA for detection of infectious agents. Lab Chip 11:957–961CrossRef
go back to reference Hsu W-T et al (2011) Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip. Anal Chim Acta 697:75–82CrossRef Hsu W-T et al (2011) Integration of fiber optic-particle plasmon resonance biosensor with microfluidic chip. Anal Chim Acta 697:75–82CrossRef
go back to reference Huang C-J, Chen Y-H, Wang C-H, Chou T-C, Lee G-B (2007) Integrated microfluidic systems for automatic glucose sensing and insulin injection. Sens Actuators B Chem 122:461–468CrossRef Huang C-J, Chen Y-H, Wang C-H, Chou T-C, Lee G-B (2007) Integrated microfluidic systems for automatic glucose sensing and insulin injection. Sens Actuators B Chem 122:461–468CrossRef
go back to reference Huang M, Fan S, Xing W, Liu C (2010) Microfluidic cell culture system studies and computational fluid dynamics. Math Comput Model 52:2036–2042CrossRef Huang M, Fan S, Xing W, Liu C (2010) Microfluidic cell culture system studies and computational fluid dynamics. Math Comput Model 52:2036–2042CrossRef
go back to reference Ibrahim D (2002) Microcontroller-based temperature monitoring and control, 1st edn. Newnes, Oxford, pp 183–190 Ibrahim D (2002) Microcontroller-based temperature monitoring and control, 1st edn. Newnes, Oxford, pp 183–190
go back to reference Kalish B, Tsutsui H (2014) Patterned adhesive enables construction of nonplanar three-dimensional paper microfluidic circuits. Lab Chip 14:4354–4361CrossRef Kalish B, Tsutsui H (2014) Patterned adhesive enables construction of nonplanar three-dimensional paper microfluidic circuits. Lab Chip 14:4354–4361CrossRef
go back to reference Kim J-W, Yoshida K, Kouda K, Yokota S (2009) A flexible electro-rheological microvalve (FERV) based on SU-8 cantilever structures and its application to microactuators. Sens Actuators A 156:366–372CrossRef Kim J-W, Yoshida K, Kouda K, Yokota S (2009) A flexible electro-rheological microvalve (FERV) based on SU-8 cantilever structures and its application to microactuators. Sens Actuators A 156:366–372CrossRef
go back to reference Kohl M, Abdel-Khalik S, Jeter S, Sadowski D (2005) A microfluidic experimental platform with internal pressure measurements. Sens Actuators A 118:212–221CrossRef Kohl M, Abdel-Khalik S, Jeter S, Sadowski D (2005) A microfluidic experimental platform with internal pressure measurements. Sens Actuators A 118:212–221CrossRef
go back to reference Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6:011301CrossRef Li X, Ballerini DR, Shen W (2012) A perspective on paper-based microfluidics: current status and future trends. Biomicrofluidics 6:011301CrossRef
go back to reference Liu C, Mauk MG, Hart R, Qiu X, Bau HH (2011) A self-heating cartridge for molecular diagnostics. Lab Chip 11:2686–2692CrossRef Liu C, Mauk MG, Hart R, Qiu X, Bau HH (2011) A self-heating cartridge for molecular diagnostics. Lab Chip 11:2686–2692CrossRef
go back to reference Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320CrossRef Martinez AW, Phillips ST, Butte MJ, Whitesides GM (2007) Patterned paper as a platform for inexpensive, low-volume, portable bioassays. Angew Chem Int Ed 46:1318–1320CrossRef
go back to reference Mondal S, Venkataraman V (2007) Novel fluorescence detection technique for non-contact temperature sensing in microchip PCR. J Biochem Biophys Methods 70:773–777CrossRef Mondal S, Venkataraman V (2007) Novel fluorescence detection technique for non-contact temperature sensing in microchip PCR. J Biochem Biophys Methods 70:773–777CrossRef
go back to reference Murray I, Walker G, Bereman MS (2016) Improving the analytical performance and versatility of paper spray mass spectrometry via paper microfluidics. Analyst Murray I, Walker G, Bereman MS (2016) Improving the analytical performance and versatility of paper spray mass spectrometry via paper microfluidics. Analyst
go back to reference Neuzil P, Pipper J, Hsieh TM (2006) Disposable real-time microPCR device: lab-on-a-chip at a low cost. Mol BioSyst 2:292–298CrossRef Neuzil P, Pipper J, Hsieh TM (2006) Disposable real-time microPCR device: lab-on-a-chip at a low cost. Mol BioSyst 2:292–298CrossRef
go back to reference Ohlander A et al (2013) Genotyping of single nucleotide polymorphisms by melting curve analysis using thin film semi-transparent heaters integrated in a lab-on-foil system. Lab Chip 13:2075–2082CrossRef Ohlander A et al (2013) Genotyping of single nucleotide polymorphisms by melting curve analysis using thin film semi-transparent heaters integrated in a lab-on-foil system. Lab Chip 13:2075–2082CrossRef
go back to reference Pal D, Venkataraman V (2002) A portable battery-operated chip thermocycler based on induction heating. Sens Actuators A 102:151–156CrossRef Pal D, Venkataraman V (2002) A portable battery-operated chip thermocycler based on induction heating. Sens Actuators A 102:151–156CrossRef
go back to reference Privorotskaya N et al (2010) Rapid thermal lysis of cells using silicon–diamond microcantilever heaters. Lab Chip 10:1135–1141CrossRef Privorotskaya N et al (2010) Rapid thermal lysis of cells using silicon–diamond microcantilever heaters. Lab Chip 10:1135–1141CrossRef
go back to reference Shaw KJ, Docker PT, Yelland JV, Dyer CE, Greenman J, Greenway GM, Haswell SJ (2010) Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling. Lab Chip 10:1725–1728CrossRef Shaw KJ, Docker PT, Yelland JV, Dyer CE, Greenman J, Greenway GM, Haswell SJ (2010) Rapid PCR amplification using a microfluidic device with integrated microwave heating and air impingement cooling. Lab Chip 10:1725–1728CrossRef
go back to reference Sieben VJ, Debes-Marun CS, Pilarski LM, Backhouse CJ (2008) An integrated microfluidic chip for chromosome enumeration using fluorescence in situ hybridization. Lab Chip 8:2151–2156CrossRef Sieben VJ, Debes-Marun CS, Pilarski LM, Backhouse CJ (2008) An integrated microfluidic chip for chromosome enumeration using fluorescence in situ hybridization. Lab Chip 8:2151–2156CrossRef
go back to reference Siegel AC, Phillips ST, Wiley BJ, Whitesides GM (2009) Thin, lightweight, foldable thermochromic displays on paper. Lab Chip 9:2775–2781CrossRef Siegel AC, Phillips ST, Wiley BJ, Whitesides GM (2009) Thin, lightweight, foldable thermochromic displays on paper. Lab Chip 9:2775–2781CrossRef
go back to reference Thom NK, Yeung K, Pillion MB, Phillips ST (2012) “Fluidic batteries” as low-cost sources of power in paper-based microfluidic devices. Lab Chip 12:1768–1770CrossRef Thom NK, Yeung K, Pillion MB, Phillips ST (2012) “Fluidic batteries” as low-cost sources of power in paper-based microfluidic devices. Lab Chip 12:1768–1770CrossRef
go back to reference Yamamoto T, Fujii T, Nojima T (2002) PDMS-glass hybrid microreactor array with embedded temperature control device. Application to cell-free protein synthesis. Lab Chip 2:197–202CrossRef Yamamoto T, Fujii T, Nojima T (2002) PDMS-glass hybrid microreactor array with embedded temperature control device. Application to cell-free protein synthesis. Lab Chip 2:197–202CrossRef
go back to reference Yu I, Yu Y, Chen L, Fan S, Chou H, Yang J (2014) A portable microfluidic device for the rapid diagnosis of cancer metastatic potential which is programmable for temperature and CO2. Lab Chip 14:3621–3628CrossRef Yu I, Yu Y, Chen L, Fan S, Chou H, Yang J (2014) A portable microfluidic device for the rapid diagnosis of cancer metastatic potential which is programmable for temperature and CO2. Lab Chip 14:3621–3628CrossRef
Metadata
Title
Paper-based resistive heater with accurate closed-loop temperature control for microfluidics paper-based analytical devices
Authors
Saeed Atabakhsh
Zahra Latifi Namin
Shahin Jafarabadi Ashtiani
Publication date
07-04-2018
Publisher
Springer Berlin Heidelberg
Published in
Microsystem Technologies / Issue 9/2018
Print ISSN: 0946-7076
Electronic ISSN: 1432-1858
DOI
https://doi.org/10.1007/s00542-018-3891-5

Other articles of this Issue 9/2018

Microsystem Technologies 9/2018 Go to the issue