Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 7/2019

15-03-2019

Paper templated synthesis of nanostructured Cu–ZnO and its enhanced photocatalytic activity under sunlight

Authors: Gajanan Kale, Sudhir Arbuj, Ujjwala Kawade, Sunil Kadam, Latesh Nikam, Bharat Kale

Published in: Journal of Materials Science: Materials in Electronics | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Cu-doped zinc oxide (Cu–ZnO) nanostructure was prepared using Whatman filter paper as a template by combustion method. For the synthesis of porous Cu–ZnO nanostructures the stoichiometric amount of precursors were impregnated in the filter papers and processed, thermally. The formation of wurtzite phase having crystallite size in the range of 20–24 nm was confirmed by X-ray diffraction (XRD) analysis. The morphological study by field emission scanning electron microscopy (FESEM) and field emission transmission electron microscopy (FETEM) shows size of nanoparticles in the range of 25–50 nm. The optical study shows red shift i.e. extended absorbance in the visible region due to Cu doping. The photoluminescence study of Cu–ZnO results quenching in the photoluminescence peak as effect of Cu doping in ZnO lattice. Considering the extended band gap in the visible region of as synthesized Cu–ZnO, the photocatalytic dye degradation activity of methylene blue (MB) was executed in presence of sunlight irradiation. The effect of salt concentration and PH on dye degradation activity also studied. The highest photocatalytic activity was observed for Cu–ZnO with 4% doping as compared with other Cu–ZnO and ZnO nanostructure. The photocatalytic performance of Cu–ZnO shows complete degradation of MB dye within 30 min for 4% Cu–ZnO nanostructure. The photocatalytic activity obtained is much higher as compare to earlier reports. The synthesis of Cu doped ZnO by paper templated method and its photocatalytic activity is hitherto unattempted.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S.R. Kadam, V.R. Mate, R.P. Panmand, L.K. Nikam, M.V. Kulkarni, R.S. Sonawane, B.B. Kale, A green process for efficient lignin (biomass) degradation and hydrogen production via water splitting using nanostructured C, N, S-doped ZnO under solar light. RSC Adv. 4, 60626–60635 (2014)CrossRef S.R. Kadam, V.R. Mate, R.P. Panmand, L.K. Nikam, M.V. Kulkarni, R.S. Sonawane, B.B. Kale, A green process for efficient lignin (biomass) degradation and hydrogen production via water splitting using nanostructured C, N, S-doped ZnO under solar light. RSC Adv. 4, 60626–60635 (2014)CrossRef
2.
go back to reference J. Yu, M. Jaroniec, Energy and environmental photocatalytic materials. Appl. Surf. Sci. 391, 71 (2017)CrossRef J. Yu, M. Jaroniec, Energy and environmental photocatalytic materials. Appl. Surf. Sci. 391, 71 (2017)CrossRef
3.
go back to reference S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Investigation the effect of temperature and polymeric capping agents on the size and photocatalytic properties of NdVO4 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 16459–16466 (2017) S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, Investigation the effect of temperature and polymeric capping agents on the size and photocatalytic properties of NdVO4 nanoparticles. J. Mater. Sci.: Mater. Electron. 28, 16459–16466 (2017)
4.
go back to reference C. Xu, G.P. Rangaiah, X.S. Zhao, Photocatalytic degradation of methylene blue by titanium dioxide: experimental and modeling study. Ind. Eng. Chem. Res. 53, 14641–14649 (2014)CrossRef C. Xu, G.P. Rangaiah, X.S. Zhao, Photocatalytic degradation of methylene blue by titanium dioxide: experimental and modeling study. Ind. Eng. Chem. Res. 53, 14641–14649 (2014)CrossRef
5.
go back to reference V. Maharugade, T. Thorve, Y. Hulawale, S. Kadam, R. Panmand, Y. Sethi, M. Chaskar, L. Nikam, Solar light driven nanostructured Fe and Cu doped TiO2 photocatalyst for degradation of phenol. J. Nanoeng. Nanomanuf. 5, 304–309 (2015)CrossRef V. Maharugade, T. Thorve, Y. Hulawale, S. Kadam, R. Panmand, Y. Sethi, M. Chaskar, L. Nikam, Solar light driven nanostructured Fe and Cu doped TiO2 photocatalyst for degradation of phenol. J. Nanoeng. Nanomanuf. 5, 304–309 (2015)CrossRef
6.
go back to reference S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag-ZnO nanocomposite. J. Phys. Chem. C 117, 27023–27030 (2013)CrossRef S.A. Ansari, M.M. Khan, M.O. Ansari, J. Lee, M.H. Cho, Biogenic synthesis, photocatalytic, and photoelectrochemical performance of Ag-ZnO nanocomposite. J. Phys. Chem. C 117, 27023–27030 (2013)CrossRef
7.
go back to reference H.R. Rajabi, M. Farsi, Study of capping agent effect on the structural, optical and photocatalytic properties of zinc sulfide quantum dots. Mater. Sci. Semicond. Process. 48, 14–22 (2016)CrossRef H.R. Rajabi, M. Farsi, Study of capping agent effect on the structural, optical and photocatalytic properties of zinc sulfide quantum dots. Mater. Sci. Semicond. Process. 48, 14–22 (2016)CrossRef
8.
go back to reference M. Sharma, T. Jain, S. Singh, O.P. Pandey, Photocatalytic degradation of organic dyes under UV–Vis light using capped ZnS nanoparticles. Sol. Energy 86, 626–633 (2012)CrossRef M. Sharma, T. Jain, S. Singh, O.P. Pandey, Photocatalytic degradation of organic dyes under UV–Vis light using capped ZnS nanoparticles. Sol. Energy 86, 626–633 (2012)CrossRef
9.
go back to reference H.S. Arif, G. Murtaza, H. Hanif, H.S. Ali, M. Yaseen, N.R. Khalid, Effect of La on structural and photocatalytic activity of SnO2 nanoparticles under UV irradiation. J. Environ. Chem. Eng. 5, 3844–3851 (2017)CrossRef H.S. Arif, G. Murtaza, H. Hanif, H.S. Ali, M. Yaseen, N.R. Khalid, Effect of La on structural and photocatalytic activity of SnO2 nanoparticles under UV irradiation. J. Environ. Chem. Eng. 5, 3844–3851 (2017)CrossRef
10.
go back to reference A. Roy, S. Arbuj, Y. Waghadkar, M. Shinde, G. Umarji, S. Rane, K. Patil, S. Gosavi, R. Chauhan, Concurrent synthesis of SnO/SnO2 nanocomposites and their enhanced photocatalytic activity. J. Solid State Electrochem. 21, 9–17 (2016)CrossRef A. Roy, S. Arbuj, Y. Waghadkar, M. Shinde, G. Umarji, S. Rane, K. Patil, S. Gosavi, R. Chauhan, Concurrent synthesis of SnO/SnO2 nanocomposites and their enhanced photocatalytic activity. J. Solid State Electrochem. 21, 9–17 (2016)CrossRef
11.
go back to reference F. Sedighi, M. Esmaeili-Zare, A. Sobhani-Nasab, M. Behpour, Synthesis and characterization of CuWO4 nanoparticle and CuWO4/NiO nanocomposite using co-precipitation method; application in photodegradation of organic dye in water. J. Mater. Sci.: Mater. Electron. 29, 13737–13745 (2018) F. Sedighi, M. Esmaeili-Zare, A. Sobhani-Nasab, M. Behpour, Synthesis and characterization of CuWO4 nanoparticle and CuWO4/NiO nanocomposite using co-precipitation method; application in photodegradation of organic dye in water. J. Mater. Sci.: Mater. Electron. 29, 13737–13745 (2018)
12.
go back to reference P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, S. Kaneco, Enhanced photocatalytic hydrogen production from aqueous methanol solution using ZnO with simultaneous photodeposition of Cu. Int. J. Hydrogen Energy 38, 11840–11846 (2013)CrossRef P. Gomathisankar, K. Hachisuka, H. Katsumata, T. Suzuki, K. Funasaka, S. Kaneco, Enhanced photocatalytic hydrogen production from aqueous methanol solution using ZnO with simultaneous photodeposition of Cu. Int. J. Hydrogen Energy 38, 11840–11846 (2013)CrossRef
13.
go back to reference S.R. Kadam, D.J. Late, R.P. Panmand, M.V. Kulkarni, L.K. Nikam, S.W. Gosavi, C.J. Park, B.B. Kale, Nanostructured 2D MoS2 honeycomb and hierarchical 3D CdMoS4 marigold nanoflowers for hydrogen production under solar light. J. Mater. Chem. A 3, 21233–21243 (2015)CrossRef S.R. Kadam, D.J. Late, R.P. Panmand, M.V. Kulkarni, L.K. Nikam, S.W. Gosavi, C.J. Park, B.B. Kale, Nanostructured 2D MoS2 honeycomb and hierarchical 3D CdMoS4 marigold nanoflowers for hydrogen production under solar light. J. Mater. Chem. A 3, 21233–21243 (2015)CrossRef
14.
go back to reference M.T. Uddin, Y. Nicolas, T. Olivier, C.I. Toupance, L. Servant, M.M. Müller, H.-J. Kleebe, J. Ziegler, W. Jaegermann, Nanostructured SnO2–ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg. Chem. 51, 7764–7773 (2012)CrossRef M.T. Uddin, Y. Nicolas, T. Olivier, C.I. Toupance, L. Servant, M.M. Müller, H.-J. Kleebe, J. Ziegler, W. Jaegermann, Nanostructured SnO2–ZnO heterojunction photocatalysts showing enhanced photocatalytic activity for the degradation of organic dyes. Inorg. Chem. 51, 7764–7773 (2012)CrossRef
15.
go back to reference C.A. Jaramillo-Páez, J.A. NavÃo, M.C. Hidalgo, M. MacÃas, ZnO and Pt-ZnO photocatalysts: characterization and photocatalytic activity assessing by means of three substrates. Catal. Today 313, 12 (2017)CrossRef C.A. Jaramillo-Páez, J.A. NavÃo, M.C. Hidalgo, M. MacÃas, ZnO and Pt-ZnO photocatalysts: characterization and photocatalytic activity assessing by means of three substrates. Catal. Today 313, 12 (2017)CrossRef
16.
go back to reference S.S. Patil, M.G. Mali, M.S. Tamboli, D.R. Patil, M.V. Kulkarni, H. Yoon, H. Kim, S.S. Al-Deyab, S.S. Yoon, S.S. Kolekar, B.B. Kale, Green approach for hierarchical nanostructured Ag-ZnO and their photocatalytic performance under sunlight. Catal. Today 260, 126–134 (2015)CrossRef S.S. Patil, M.G. Mali, M.S. Tamboli, D.R. Patil, M.V. Kulkarni, H. Yoon, H. Kim, S.S. Al-Deyab, S.S. Yoon, S.S. Kolekar, B.B. Kale, Green approach for hierarchical nanostructured Ag-ZnO and their photocatalytic performance under sunlight. Catal. Today 260, 126–134 (2015)CrossRef
17.
go back to reference F. Fan, J. Zhang, J. Li, N. Zhang, R. Hong, X. Deng, P. Tang, D. Li, Hydrogen sensing properties of Pt-Au bimetallic nanoparticles loaded on ZnO nanorods. Sens. Actuators B 241, 895–903 (2017)CrossRef F. Fan, J. Zhang, J. Li, N. Zhang, R. Hong, X. Deng, P. Tang, D. Li, Hydrogen sensing properties of Pt-Au bimetallic nanoparticles loaded on ZnO nanorods. Sens. Actuators B 241, 895–903 (2017)CrossRef
18.
go back to reference P. Li, Z. Wei, T. Wu, Q. Peng, Y. Li, Au−ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 133, 5660–5663 (2011)CrossRef P. Li, Z. Wei, T. Wu, Q. Peng, Y. Li, Au−ZnO hybrid nanopyramids and their photocatalytic properties. J. Am. Chem. Soc. 133, 5660–5663 (2011)CrossRef
19.
go back to reference M. Mittal, M. Sharma, O.P. Pandey, UV–Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method. Sol. Energy 110, 386–397 (2014)CrossRef M. Mittal, M. Sharma, O.P. Pandey, UV–Visible light induced photocatalytic studies of Cu doped ZnO nanoparticles prepared by co-precipitation method. Sol. Energy 110, 386–397 (2014)CrossRef
20.
go back to reference K. Yasuo, Admittance spectroscopy of Cu-doped ZnO crystals. Jpn. J. Appl. Phys. 30, 703 (1991)CrossRef K. Yasuo, Admittance spectroscopy of Cu-doped ZnO crystals. Jpn. J. Appl. Phys. 30, 703 (1991)CrossRef
21.
go back to reference K.R. Chandrasekhar, J.D. Ambekar, S.B. Rane, S.S. Arbuj, Solvothermal synthesis of photoluminescent ZnO nanostructures and its photocatalytic application study. J. Nanoeng. Nanomanuf. 5, 77–81 (2015)CrossRef K.R. Chandrasekhar, J.D. Ambekar, S.B. Rane, S.S. Arbuj, Solvothermal synthesis of photoluminescent ZnO nanostructures and its photocatalytic application study. J. Nanoeng. Nanomanuf. 5, 77–81 (2015)CrossRef
22.
go back to reference F. Wang, X. Qin, Z. Guo, Y. Meng, L. Yang, Y. Ming, Hydrothermal synthesis of dumbbell-shaped ZnO microstructures. Ceram. Int. 39, 8969–8973 (2013)CrossRef F. Wang, X. Qin, Z. Guo, Y. Meng, L. Yang, Y. Ming, Hydrothermal synthesis of dumbbell-shaped ZnO microstructures. Ceram. Int. 39, 8969–8973 (2013)CrossRef
23.
go back to reference S. Music, A. Saric, S. Popovic, Formation of nanosize ZnO particles by thermal decomposition of zinc acetylacetonate monohydrate. Ceram. Int. 36, 1117–1123 (2010)CrossRef S. Music, A. Saric, S. Popovic, Formation of nanosize ZnO particles by thermal decomposition of zinc acetylacetonate monohydrate. Ceram. Int. 36, 1117–1123 (2010)CrossRef
24.
go back to reference M. Purica, E. Budianu, E. Rusu, M. Danila, R. Gavrila, Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD). Thin Solid Films 403–404, 485–488 (2002)CrossRef M. Purica, E. Budianu, E. Rusu, M. Danila, R. Gavrila, Optical and structural investigation of ZnO thin films prepared by chemical vapor deposition (CVD). Thin Solid Films 403–404, 485–488 (2002)CrossRef
25.
go back to reference G. Kale, S. Arbuj, V. Kawade, U. Rane, S. Ambekar, J.B. Kale, Porous N-doped zinc oxide nanostructure by novel paper mediated template method and its photocatalytic study for dye degradation under natural sunlight. Mater. Chem. Front. 2, 163–170 (2017)CrossRef G. Kale, S. Arbuj, V. Kawade, U. Rane, S. Ambekar, J.B. Kale, Porous N-doped zinc oxide nanostructure by novel paper mediated template method and its photocatalytic study for dye degradation under natural sunlight. Mater. Chem. Front. 2, 163–170 (2017)CrossRef
26.
go back to reference S.S. Arbuj, R.R. Hawaldar, U.P. Mulik, B.N. Wani, D.P. Amalnerkar, S.B. Waghmode, Preparation, characterization and photocatalytic activity of TiO2 towards methylene blue degradation. Mater. Sci. Eng. B 168(1), 90–94 (2010)CrossRef S.S. Arbuj, R.R. Hawaldar, U.P. Mulik, B.N. Wani, D.P. Amalnerkar, S.B. Waghmode, Preparation, characterization and photocatalytic activity of TiO2 towards methylene blue degradation. Mater. Sci. Eng. B 168(1), 90–94 (2010)CrossRef
27.
go back to reference M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, S. Pourmasoud, Green synthesis and characterization of SmVO4 nanoparticles in the presence of carbohydrates As capping agents with investigation of visible-light photocatalytic properties. J. Electron. Mater. 47, 3757–3769 (2018)CrossRef M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, S. Pourmasoud, Green synthesis and characterization of SmVO4 nanoparticles in the presence of carbohydrates As capping agents with investigation of visible-light photocatalytic properties. J. Electron. Mater. 47, 3757–3769 (2018)CrossRef
28.
go back to reference S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt. Mater. 34, 1946–1953 (2012)CrossRef S. Muthukumaran, R. Gopalakrishnan, Structural, FTIR and photoluminescence studies of Cu doped ZnO nanopowders by co-precipitation method. Opt. Mater. 34, 1946–1953 (2012)CrossRef
29.
go back to reference P.K. Sharma, M. Kumar, A.C. Pandey, Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs. J. Nanopart. Res. 13(4), 1629–1637 (2011)CrossRef P.K. Sharma, M. Kumar, A.C. Pandey, Green luminescent ZnO:Cu2+ nanoparticles for their applications in white-light generation from UV LEDs. J. Nanopart. Res. 13(4), 1629–1637 (2011)CrossRef
30.
go back to reference A. Askarinejad, A. Morsali, Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4. Ultrason. Sonochem 16, 124–131 (2009)CrossRef A. Askarinejad, A. Morsali, Direct ultrasonic-assisted synthesis of sphere-like nanocrystals of spinel Co3O4 and Mn3O4. Ultrason. Sonochem 16, 124–131 (2009)CrossRef
31.
go back to reference M. Fu, Y. Li, S. wu, P. Lu, J. Liu, F. Dong, Sol-gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Appl. Surf. Sci. 258, 1587–1591 (2011)CrossRef M. Fu, Y. Li, S. wu, P. Lu, J. Liu, F. Dong, Sol-gel preparation and enhanced photocatalytic performance of Cu-doped ZnO nanoparticles. Appl. Surf. Sci. 258, 1587–1591 (2011)CrossRef
32.
go back to reference M. Mergoramadhayenty, M. Lusitra, S. Rosari, Co-precipitation synthesis and characterization of nanocrystalline zinc oxide particles doped with Cu2+ ions. Mater. Sci. Appl. 3(8), 543 (2012) M. Mergoramadhayenty, M. Lusitra, S. Rosari, Co-precipitation synthesis and characterization of nanocrystalline zinc oxide particles doped with Cu2+ ions. Mater. Sci. Appl. 3(8), 543 (2012)
33.
go back to reference A. Ghosh, N. Kumari, A. Bhattacharjee, Influence of Cu doping on the structural, electrical and optical properties of ZnO. Pramana 84, 621–635 (2015)CrossRef A. Ghosh, N. Kumari, A. Bhattacharjee, Influence of Cu doping on the structural, electrical and optical properties of ZnO. Pramana 84, 621–635 (2015)CrossRef
34.
go back to reference H.R. Rajabi, O. Khani, M. Shamsipur, V. Vatanpour, High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation. J. Hazard. Mater. 250–251, 370–378 (2013)CrossRef H.R. Rajabi, O. Khani, M. Shamsipur, V. Vatanpour, High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation. J. Hazard. Mater. 250–251, 370–378 (2013)CrossRef
35.
go back to reference X.-Y. Li, H.-J. Li, M. Yuan, Z.-J. Wang, Z.-Y. Zhou, R.-B. Xu, Influence of oxygen partial pressure on electrical and optical properties of Zn0.93 Mn0.07O thin films. J. Alloy. Compd. 509, 3025–3031 (2011)CrossRef X.-Y. Li, H.-J. Li, M. Yuan, Z.-J. Wang, Z.-Y. Zhou, R.-B. Xu, Influence of oxygen partial pressure on electrical and optical properties of Zn0.93 Mn0.07O thin films. J. Alloy. Compd. 509, 3025–3031 (2011)CrossRef
36.
go back to reference A. Bhirud, S. Sathaye, R. Waichal, C.-J. Park, B. Kale, In situ preparation of N-ZnO/graphene nanocomposites: excellent candidate as a photocatalyst for enhanced solar hydrogen generation and high performance supercapacitor electrode. J. Mater. Chem. A 3, 17050–17063 (2015)CrossRef A. Bhirud, S. Sathaye, R. Waichal, C.-J. Park, B. Kale, In situ preparation of N-ZnO/graphene nanocomposites: excellent candidate as a photocatalyst for enhanced solar hydrogen generation and high performance supercapacitor electrode. J. Mater. Chem. A 3, 17050–17063 (2015)CrossRef
37.
go back to reference J. Liqiang, W. Dejun, W. Baiqi, L. Shudan, X. Baifu, F. Honggang, S. Jiazhong, Effects of noble metal modification on surface oxygen composition, charge separation and photocatalytic activity of ZnO nanoparticles. J. Mol. Catal. A: Chem. 244, 193–200 (2006)CrossRef J. Liqiang, W. Dejun, W. Baiqi, L. Shudan, X. Baifu, F. Honggang, S. Jiazhong, Effects of noble metal modification on surface oxygen composition, charge separation and photocatalytic activity of ZnO nanoparticles. J. Mol. Catal. A: Chem. 244, 193–200 (2006)CrossRef
38.
go back to reference X.H. Wang, S. Liu, P. Chang, Y. Tang, Influence of S incorporation on the luminescence property of ZnO nanowires by electrochemical deposition. Phys. Lett. A 372, 2900–2903 (2008)CrossRef X.H. Wang, S. Liu, P. Chang, Y. Tang, Influence of S incorporation on the luminescence property of ZnO nanowires by electrochemical deposition. Phys. Lett. A 372, 2900–2903 (2008)CrossRef
39.
go back to reference H. Bai, Z. Liu, D.D. Sun, Hierarchical ZnO/Cu “corn-like” materials with high photodegradation and antibacterial capability under visible light. Phys. Chem. Chem. Phys. 13, 6205–6210 (2011)CrossRef H. Bai, Z. Liu, D.D. Sun, Hierarchical ZnO/Cu “corn-like” materials with high photodegradation and antibacterial capability under visible light. Phys. Chem. Chem. Phys. 13, 6205–6210 (2011)CrossRef
40.
go back to reference S. Kuriakose, B. Satpati, S. Mohapatra, Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Phys. Chem. Chem. Phys. 17, 25172–25181 (2015)CrossRef S. Kuriakose, B. Satpati, S. Mohapatra, Highly efficient photocatalytic degradation of organic dyes by Cu doped ZnO nanostructures. Phys. Chem. Chem. Phys. 17, 25172–25181 (2015)CrossRef
41.
go back to reference A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, H. Ehrlich, M. Rahimi-Nasrabadi, Synthesis and characterization of MnWO4/TmVO4 ternary nano-hybrids by an ultrasonic method for enhanced photocatalytic activity in the degradation of organic dyes. Mater. Lett. 238, 159–162 (2018)CrossRef A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowski, T. Jesionowski, H. Ehrlich, M. Rahimi-Nasrabadi, Synthesis and characterization of MnWO4/TmVO4 ternary nano-hybrids by an ultrasonic method for enhanced photocatalytic activity in the degradation of organic dyes. Mater. Lett. 238, 159–162 (2018)CrossRef
42.
go back to reference S.S. Arbuj, U.P. Mulik, D.P. Amalnerkar, Synthesis of Ta2O5/TiO2 coupled semiconductor oxide nanocomposites with high photocatalytic activity. Nanosci. Nanotechnol. Lett. 5, 968–973 (2013)CrossRef S.S. Arbuj, U.P. Mulik, D.P. Amalnerkar, Synthesis of Ta2O5/TiO2 coupled semiconductor oxide nanocomposites with high photocatalytic activity. Nanosci. Nanotechnol. Lett. 5, 968–973 (2013)CrossRef
43.
go back to reference V.G. Deonikar, S.S. Patil, M.S. Tamboli, J.D. Ambekar, M.V. Kulkarni, R.P. Panmand, G.G. Umarji, M.D. Shinde, S.B. Rane, N.R. Munirathnam, D.R. Patil, B.B. Kale, Growth study of hierarchical Ag3PO4/LaCO3OH heterostructures and their efficient photocatalytic activity for RhB degradation. Phys. Chem. Chem. Phys. 19, 20541–20550 (2017)CrossRef V.G. Deonikar, S.S. Patil, M.S. Tamboli, J.D. Ambekar, M.V. Kulkarni, R.P. Panmand, G.G. Umarji, M.D. Shinde, S.B. Rane, N.R. Munirathnam, D.R. Patil, B.B. Kale, Growth study of hierarchical Ag3PO4/LaCO3OH heterostructures and their efficient photocatalytic activity for RhB degradation. Phys. Chem. Chem. Phys. 19, 20541–20550 (2017)CrossRef
44.
go back to reference M. Shamsipur, H.R. Rajabi, Study of photocatalytic activity of ZnS quantum dots as efficient nanoparticles for removal of methyl violet: effect of ferric ion doping. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 122, 260–267 (2014)CrossRef M. Shamsipur, H.R. Rajabi, Study of photocatalytic activity of ZnS quantum dots as efficient nanoparticles for removal of methyl violet: effect of ferric ion doping. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 122, 260–267 (2014)CrossRef
45.
go back to reference R.C. Pawar, D.-H. Choi, J.-S. Lee, C.S. Lee, Formation of polar surfaces in microstructured ZnO by doping with Cu and applications in photocatalysis using visible light. Mater. Chem. Phys. 151, 167–180 (2015)CrossRef R.C. Pawar, D.-H. Choi, J.-S. Lee, C.S. Lee, Formation of polar surfaces in microstructured ZnO by doping with Cu and applications in photocatalysis using visible light. Mater. Chem. Phys. 151, 167–180 (2015)CrossRef
46.
go back to reference T. Bhuyan, M. Khanuja, R. Sharma, S. Patel, M.R. Reddy, S. Anand, A. Varma, A comparative study of pure and copper (Cu)-doped ZnO nanorods for antibacterial and photocatalytic applications with their mechanism of action. J. Nanopart. Res. 17, 288 (2015)CrossRef T. Bhuyan, M. Khanuja, R. Sharma, S. Patel, M.R. Reddy, S. Anand, A. Varma, A comparative study of pure and copper (Cu)-doped ZnO nanorods for antibacterial and photocatalytic applications with their mechanism of action. J. Nanopart. Res. 17, 288 (2015)CrossRef
47.
go back to reference S.-H. Chang, P.-Y. Yang, C.-M. Lai, S.-C. Lu, G.-A. Li, W.-C. Chang, H.-Y. Tuan, Synthesis of Cu/ZnO core/shell nanocomposites and their use as efficient photocatalysts. CrystEngComm 18, 616–621 (2015)CrossRef S.-H. Chang, P.-Y. Yang, C.-M. Lai, S.-C. Lu, G.-A. Li, W.-C. Chang, H.-Y. Tuan, Synthesis of Cu/ZnO core/shell nanocomposites and their use as efficient photocatalysts. CrystEngComm 18, 616–621 (2015)CrossRef
48.
go back to reference S. Sriram, K.C. Lalithambika, A. Thayumanavan, Experimental and theoretical investigations of photocatalytic activity of Cu doped ZnO nanoparticles. Optik 139, 299–308 (2017)CrossRef S. Sriram, K.C. Lalithambika, A. Thayumanavan, Experimental and theoretical investigations of photocatalytic activity of Cu doped ZnO nanoparticles. Optik 139, 299–308 (2017)CrossRef
49.
go back to reference J.R. Torres-Hernández, E. RamÃrez-Morales, L. Rojas-Blanco, J. Pantoja-Enriquez, G. Oskam, F. Paraguay-Delgado, B. Escobar-Morales, M. Acosta-Alejandro, L.L. DÃaz-Flores, G. Pérez-Hernández, Structural, optical and photocatalytic properties of ZnO nanoparticles modified with Cu. Mater. Sci. Semicond. Process. 37, 87–92 (2015)CrossRef J.R. Torres-Hernández, E. RamÃrez-Morales, L. Rojas-Blanco, J. Pantoja-Enriquez, G. Oskam, F. Paraguay-Delgado, B. Escobar-Morales, M. Acosta-Alejandro, L.L. DÃaz-Flores, G. Pérez-Hernández, Structural, optical and photocatalytic properties of ZnO nanoparticles modified with Cu. Mater. Sci. Semicond. Process. 37, 87–92 (2015)CrossRef
50.
go back to reference W.L. Wang, C.X. Yang, F. Zhang, P. Li, G.W. Cui, Remarkable sunlight photocatalytic activity due to synergetic effect of ZnO with Cu. Key Eng. Mater. 727, 388–394 (2017)CrossRef W.L. Wang, C.X. Yang, F. Zhang, P. Li, G.W. Cui, Remarkable sunlight photocatalytic activity due to synergetic effect of ZnO with Cu. Key Eng. Mater. 727, 388–394 (2017)CrossRef
51.
go back to reference S.P. Meshram, P.V. Adhyapak, D.P. Amalnerkar, I.S. Mulla, Cu doped ZnO microballs as effective sunlight driven photocatalyst. Ceram. Int. 42, 7482–7489 (2016)CrossRef S.P. Meshram, P.V. Adhyapak, D.P. Amalnerkar, I.S. Mulla, Cu doped ZnO microballs as effective sunlight driven photocatalyst. Ceram. Int. 42, 7482–7489 (2016)CrossRef
52.
go back to reference A.A. Abdel-Khalek, S.A. Mahmoud, A.H. Zaki, Visible light assisted photocatalytic degradation of crystal violet, bromophenol blue and eosin Y dyes using AgBr-ZnO nanocomposite. Environ. Nanotech. Monit. Manage. 9, 164–173 (2018) A.A. Abdel-Khalek, S.A. Mahmoud, A.H. Zaki, Visible light assisted photocatalytic degradation of crystal violet, bromophenol blue and eosin Y dyes using AgBr-ZnO nanocomposite. Environ. Nanotech. Monit. Manage. 9, 164–173 (2018)
53.
go back to reference F.D. Mai, C.C. Chen, J.L. Chen, S.C. Liu, Photodegradation of methyl green using visible irradiation in ZnO suspensions: determination of the reaction pathway and identification of intermediates by a high-performance liquid chromatography–photodiode array-electrospray ionization-mass spectrometry method. J. Chromatogr. A 1189, 355–365 (2008)CrossRef F.D. Mai, C.C. Chen, J.L. Chen, S.C. Liu, Photodegradation of methyl green using visible irradiation in ZnO suspensions: determination of the reaction pathway and identification of intermediates by a high-performance liquid chromatography–photodiode array-electrospray ionization-mass spectrometry method. J. Chromatogr. A 1189, 355–365 (2008)CrossRef
54.
go back to reference A. Khataee, A. Karimi, S. Arefi-Oskoui, R.D.C. Soltani, Y. Hanifehpour, B. Soltani, S.W. Joo, Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17. Ultrason. Sonochem. 22, 371–381 (2015)CrossRef A. Khataee, A. Karimi, S. Arefi-Oskoui, R.D.C. Soltani, Y. Hanifehpour, B. Soltani, S.W. Joo, Sonochemical synthesis of Pr-doped ZnO nanoparticles for sonocatalytic degradation of Acid Red 17. Ultrason. Sonochem. 22, 371–381 (2015)CrossRef
55.
go back to reference R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik 127, 7143–7154 (2016)CrossRef R.S. Dariani, A. Esmaeili, A. Mortezaali, S. Dehghanpour, Photocatalytic reaction and degradation of methylene blue on TiO2 nano-sized particles. Optik 127, 7143–7154 (2016)CrossRef
56.
go back to reference M.J. Uddin, M.A. Islam, S.A. Haque (2001) Preparation of nanostructured tio2-based photocatalyst by controlling the calcining temperature and ph. Int. Nano Lett. 2, 19CrossRef M.J. Uddin, M.A. Islam, S.A. Haque (2001) Preparation of nanostructured tio2-based photocatalyst by controlling the calcining temperature and ph. Int. Nano Lett. 2, 19CrossRef
57.
go back to reference H. Sudrajat, S. Babel, A novel visible light active N-doped ZnO for photocatalytic degradation of dyes. J. Water Process Eng. 16, 309–318 (2017)CrossRef H. Sudrajat, S. Babel, A novel visible light active N-doped ZnO for photocatalytic degradation of dyes. J. Water Process Eng. 16, 309–318 (2017)CrossRef
58.
go back to reference X. Liu, Y. Yang, X. Shi, K. Li, Fast photocatalytic degradation of methylene blue dye using a low-power diode laser. J. Hazard. Mater. 283, 267–275 (2015)CrossRef X. Liu, Y. Yang, X. Shi, K. Li, Fast photocatalytic degradation of methylene blue dye using a low-power diode laser. J. Hazard. Mater. 283, 267–275 (2015)CrossRef
Metadata
Title
Paper templated synthesis of nanostructured Cu–ZnO and its enhanced photocatalytic activity under sunlight
Authors
Gajanan Kale
Sudhir Arbuj
Ujjwala Kawade
Sunil Kadam
Latesh Nikam
Bharat Kale
Publication date
15-03-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 7/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01020-w

Other articles of this Issue 7/2019

Journal of Materials Science: Materials in Electronics 7/2019 Go to the issue