Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 7/2019

06-03-2019

RETRACTED ARTICLE: Graphenic nanosheets sandwiched between crystalline cakes of poly(3-hexylthiophene) via simultaneous grafting/crystallization and their applications in active photovoltaic layers

Authors: Mohammad Zeighami, Samira Agbolaghi, Ali Hamdast, Raana Sarvari

Published in: Journal of Materials Science: Materials in Electronics | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Via simultaneous grafting and crystallization of regioregular poly(3-hexylthiophene) (P3HT) chains onto the reduced graphene oxide nanosheets, the cake-like P3HT crystalline layers sandwiched the nanosheets and sandG-cakeP3HT nano-hybrids were designed. The P3HT grafts directed the P3HT free-chains to vertically assemble onto the rGO-graft-P3HT and reach a flat-on orientation. Further red-shifting and peak intensification were also detected in respective ultraviolet–visible spectra (A0−2 = 491, A0−1 = 552, and A0−0 = 602 nm) and the conductivities of sandG-cakeP3HT nanostructures ranged in 10.13–10.29 S/cm. The bandgap of sandG-cakeP3HT supramolecules [the highest occupied molecular orbital (HOMO) =−5.37 eV, the lowest unoccupied molecular orbital (LUMO) = −3.48 eV] was 1.89 eV. A huge jump in the improvement of photovoltaic characteristics was achieved by newly developed sandG-cakeP3HT nano-hybrids. The P3HT:sandG-cakeP3HT photovoltaic devices led to the characteristics of 9.81 mA/cm2 (short circuit current density), 55% (fill factor), 0.66 V (open circuit voltage) and 3.56% (efficiency). The addition of phenyl-C71-butyric acid methyl ester (PC71BM) also improved the properties to 11.48 mA/cm2, 60%, 0.67 V and 4.61%. The external quantum efficiency measurements verified the influence of developed donor–acceptor nano-hybrids on the photovoltaic characteristics. The maximum peak values of 72–74% were detected at 560 nm for P3HT:sandG-cakeP3HT:PC71BM devices.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference M.K. Chuang, S.W. Lin, F.C. Chen, C.W. Chu, C.S. Hsu, Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices. Nanoscale 6(3), 1573–1579 (2014)CrossRef M.K. Chuang, S.W. Lin, F.C. Chen, C.W. Chu, C.S. Hsu, Gold nanoparticle-decorated graphene oxides for plasmonic-enhanced polymer photovoltaic devices. Nanoscale 6(3), 1573–1579 (2014)CrossRef
2.
go back to reference A. Chunder, J. Liu, L. Zhai, Reduced graphene oxide/poly(3-hexylthiophene) supramolecular composites. Macromol. Rapid Commun. 31(4), 380–384 (2010)CrossRef A. Chunder, J. Liu, L. Zhai, Reduced graphene oxide/poly(3-hexylthiophene) supramolecular composites. Macromol. Rapid Commun. 31(4), 380–384 (2010)CrossRef
3.
go back to reference Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, Y. Chen, Organic photovoltaic cells based on an acceptor of soluble graphene. Appl. Phys. Lett. 92(22), 195 (2008)CrossRef Q. Liu, Z. Liu, X. Zhang, N. Zhang, L. Yang, S. Yin, Y. Chen, Organic photovoltaic cells based on an acceptor of soluble graphene. Appl. Phys. Lett. 92(22), 195 (2008)CrossRef
4.
go back to reference J. Liu, Y. Xue, M. Zhang, L. Dai, Graphene-based materials for energy applications. MRS Bull. 37(12), 1265–1272 (2012)CrossRef J. Liu, Y. Xue, M. Zhang, L. Dai, Graphene-based materials for energy applications. MRS Bull. 37(12), 1265–1272 (2012)CrossRef
5.
go back to reference H.J. Jhuo, P.N. Yeh, S.H. Liao, Y.L. Li, Y.S. Cheng, S.A. Chen, Review on the recent progress in low band gap conjugated polymers for bulk hetero-junction polymer solar cells. J. Chin. Chem. Soc. 61(1), 115–126 (2014)CrossRef H.J. Jhuo, P.N. Yeh, S.H. Liao, Y.L. Li, Y.S. Cheng, S.A. Chen, Review on the recent progress in low band gap conjugated polymers for bulk hetero-junction polymer solar cells. J. Chin. Chem. Soc. 61(1), 115–126 (2014)CrossRef
6.
go back to reference C.A. Di, Y. Liu, G. Yu, D. Zhu, Interface engineering: an effective approach toward high-performance organic field-effect transistors. Acc. Chem. Res. 42(10), 1573–1583 (2009)CrossRef C.A. Di, Y. Liu, G. Yu, D. Zhu, Interface engineering: an effective approach toward high-performance organic field-effect transistors. Acc. Chem. Res. 42(10), 1573–1583 (2009)CrossRef
7.
go back to reference H. Ma, H.L. Yip, F. Huang, A.K.Y. Jen, Interface engineering for organic electronics. Adv. Funct. Mater. 20(9), 1371–1388 (2010)CrossRef H. Ma, H.L. Yip, F. Huang, A.K.Y. Jen, Interface engineering for organic electronics. Adv. Funct. Mater. 20(9), 1371–1388 (2010)CrossRef
8.
go back to reference S. Braun, W.R. Salaneck, M. Fahlman, Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 21(14–15), 1450–1472 (2009)CrossRef S. Braun, W.R. Salaneck, M. Fahlman, Energy-level alignment at organic/metal and organic/organic interfaces. Adv. Mater. 21(14–15), 1450–1472 (2009)CrossRef
9.
go back to reference S. Berson, R. De Bettignies, S. Bailly, S. Guillerez, Poly(3-hexylthiophene) fibers for photovoltaic applications. Adv. Func. Mater. 17(8), 1377–1384 (2007)CrossRef S. Berson, R. De Bettignies, S. Bailly, S. Guillerez, Poly(3-hexylthiophene) fibers for photovoltaic applications. Adv. Func. Mater. 17(8), 1377–1384 (2007)CrossRef
10.
go back to reference M. Reyes-Reyes, K. Kim, J. Dewald, R. López-Sandoval, A. Avadhanula, S. Curran, D.L. Carroll, Meso-structure formation for enhanced organic photovoltaic cells. Org. Lett. 7(26), 5749–5752 (2005)CrossRef M. Reyes-Reyes, K. Kim, J. Dewald, R. López-Sandoval, A. Avadhanula, S. Curran, D.L. Carroll, Meso-structure formation for enhanced organic photovoltaic cells. Org. Lett. 7(26), 5749–5752 (2005)CrossRef
11.
go back to reference S. Agbolaghi, S. Ebrahimi, B. Massoumi, S. Abbaspoor, R. Sarvari, F. Abbasi, Enhanced properties of photovoltaic devices tailored with novel supramolecular structures based on reduced graphene oxide nanosheets grafted/functionalized with thiophenic materials. J. Polym. Sci. B 55(24), 1877–1889 (2017)CrossRef S. Agbolaghi, S. Ebrahimi, B. Massoumi, S. Abbaspoor, R. Sarvari, F. Abbasi, Enhanced properties of photovoltaic devices tailored with novel supramolecular structures based on reduced graphene oxide nanosheets grafted/functionalized with thiophenic materials. J. Polym. Sci. B 55(24), 1877–1889 (2017)CrossRef
12.
go back to reference R. Bkakri, O.E. Kusmartseva, F.V. Kusmartsev, M. Song, A. Bouazizi, Degree of phase separation effects on the charge transfer properties of P3HT:Graphene nanocomposites. J. Lumin. 161, 264–270 (2015)CrossRef R. Bkakri, O.E. Kusmartseva, F.V. Kusmartsev, M. Song, A. Bouazizi, Degree of phase separation effects on the charge transfer properties of P3HT:Graphene nanocomposites. J. Lumin. 161, 264–270 (2015)CrossRef
13.
go back to reference V.S.A. Challa, K.C. Nune, R.D.K. Misra, The impact of molecular weight on nanoscale supramolecular structure of semiconducting poly (3-hexylthiophene) on carbon nanotubes and photophysical properties. Mater. Technol. 31(8), 477–481 (2016)CrossRef V.S.A. Challa, K.C. Nune, R.D.K. Misra, The impact of molecular weight on nanoscale supramolecular structure of semiconducting poly (3-hexylthiophene) on carbon nanotubes and photophysical properties. Mater. Technol. 31(8), 477–481 (2016)CrossRef
14.
go back to reference S. Zenoozi, S. Agbolaghi, H. Gheybi, F. an Abbasi, High-quality nano/micro hairy single crystals developed from poly(3-hexylthiophene)-based conductive–dielectric block copolymers having flat-on and edge-on orientations. Macromol. Chem. Phys. 218(14), 1700067 (2017)CrossRef S. Zenoozi, S. Agbolaghi, H. Gheybi, F. an Abbasi, High-quality nano/micro hairy single crystals developed from poly(3-hexylthiophene)-based conductive–dielectric block copolymers having flat-on and edge-on orientations. Macromol. Chem. Phys. 218(14), 1700067 (2017)CrossRef
15.
go back to reference S. Agbolaghi, F. Abbasi, S. Zenoozi, M. Nazari, Annealing-free multi-thermal techniques comprising aging, cycling and seeding to enhance performance of thick P3HT: PCBM photovoltaic cells via developing hairy crystals. Mater. Sci. Semicond. Process. 63, 285–294 (2017)CrossRef S. Agbolaghi, F. Abbasi, S. Zenoozi, M. Nazari, Annealing-free multi-thermal techniques comprising aging, cycling and seeding to enhance performance of thick P3HT: PCBM photovoltaic cells via developing hairy crystals. Mater. Sci. Semicond. Process. 63, 285–294 (2017)CrossRef
16.
go back to reference S. Miller, G. Fanchini, Y.Y. Lin, C. Li, C.W. Chen, W.F. Su, M. Chhowalla, Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing. J. Mater. Chem. 18(3), 306–312 (2008)CrossRef S. Miller, G. Fanchini, Y.Y. Lin, C. Li, C.W. Chen, W.F. Su, M. Chhowalla, Investigation of nanoscale morphological changes in organic photovoltaics during solvent vapor annealing. J. Mater. Chem. 18(3), 306–312 (2008)CrossRef
17.
go back to reference S. Zenoozi, S. Agbolaghi, M. Nazari, F. Abbasi, Thermal and optical properties of nano/micro single crystals and nanofibers obtained from semiconductive-dielectric poly (3-hexylthiophene) block copolymers. Mater. Sci. Semicond. Process. 64, 85–94 (2017)CrossRef S. Zenoozi, S. Agbolaghi, M. Nazari, F. Abbasi, Thermal and optical properties of nano/micro single crystals and nanofibers obtained from semiconductive-dielectric poly (3-hexylthiophene) block copolymers. Mater. Sci. Semicond. Process. 64, 85–94 (2017)CrossRef
18.
go back to reference T. Yamamoto, D. Komarudin, M. Arai, B.L. Lee, H. Suganuma, N. Asakawa, Y. Inoue, K. Kubota, S. Sasaki, T. Fukuda, H. Matsuda, Extensive studies on π-stacking of poly (3-alkylthiophene-2,5-diyl) s and poly (4-alkylthiazole-2,5-diyl) s by optical spectroscopy, NMR analysis, light scattering analysis, and X-ray crystallography. J. Am. Chem. Soc. 120(9), 2047–2058 (1998)CrossRef T. Yamamoto, D. Komarudin, M. Arai, B.L. Lee, H. Suganuma, N. Asakawa, Y. Inoue, K. Kubota, S. Sasaki, T. Fukuda, H. Matsuda, Extensive studies on π-stacking of poly (3-alkylthiophene-2,5-diyl) s and poly (4-alkylthiazole-2,5-diyl) s by optical spectroscopy, NMR analysis, light scattering analysis, and X-ray crystallography. J. Am. Chem. Soc. 120(9), 2047–2058 (1998)CrossRef
19.
go back to reference M. Al-Ibrahim, H.K. Roth, U. Zhokhavets, G. Gobsch, S. Sensfuss, Flexible large area polymer solar cells based on poly (3-hexylthiophene)/fullerene. Sol. Energy Mater. Sol. Cells 85(1), 13–20 (2005) M. Al-Ibrahim, H.K. Roth, U. Zhokhavets, G. Gobsch, S. Sensfuss, Flexible large area polymer solar cells based on poly (3-hexylthiophene)/fullerene. Sol. Energy Mater. Sol. Cells 85(1), 13–20 (2005)
20.
go back to reference S. Agbolaghi, F. Abbasi, H. Gheybi, High efficient and stabilized photovoltaics via morphology manipulating in active layer by rod-coil block copolymers comprising different hydrophilic to hydrophobic dielectric blocks. Eur. Polymer J. 84, 465–480 (2016)CrossRef S. Agbolaghi, F. Abbasi, H. Gheybi, High efficient and stabilized photovoltaics via morphology manipulating in active layer by rod-coil block copolymers comprising different hydrophilic to hydrophobic dielectric blocks. Eur. Polymer J. 84, 465–480 (2016)CrossRef
21.
go back to reference A.J. Moulé, K. Meerholz, Controlling morphology in polymer–fullerene mixtures. Adv. Mater. 20(2), 240–245 (2008)CrossRef A.J. Moulé, K. Meerholz, Controlling morphology in polymer–fullerene mixtures. Adv. Mater. 20(2), 240–245 (2008)CrossRef
22.
go back to reference J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6(7), 497 (2007)CrossRef J. Peet, J.Y. Kim, N.E. Coates, W.L. Ma, D. Moses, A.J. Heeger, G.C. Bazan, Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nat. Mater. 6(7), 497 (2007)CrossRef
23.
go back to reference S. Agbolaghi, M. Nazari, S. Zenoozi, F. Abbasi, The highest power conversion efficiencies in poly (3-hexylthiophene)/fullerene photovoltaic cells modified by rod-coil block copolymers under different annealing conditions. J. Mater. Sci. Mater. Electron. 28(14), 10611–10624 (2017)CrossRef S. Agbolaghi, M. Nazari, S. Zenoozi, F. Abbasi, The highest power conversion efficiencies in poly (3-hexylthiophene)/fullerene photovoltaic cells modified by rod-coil block copolymers under different annealing conditions. J. Mater. Sci. Mater. Electron. 28(14), 10611–10624 (2017)CrossRef
24.
go back to reference W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Func. Mater. 15(10), 1617–1622 (2005)CrossRef W. Ma, C. Yang, X. Gong, K. Lee, A.J. Heeger, Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Adv. Func. Mater. 15(10), 1617–1622 (2005)CrossRef
25.
go back to reference K. Kim, J. Liu, M.A. Namboothiry, D.L. Carroll, Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl. Phys. Lett. 90(16), 163511 (2007)CrossRef K. Kim, J. Liu, M.A. Namboothiry, D.L. Carroll, Roles of donor and acceptor nanodomains in 6% efficient thermally annealed polymer photovoltaics. Appl. Phys. Lett. 90(16), 163511 (2007)CrossRef
26.
go back to reference J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317(5835), 222–225 (2007)CrossRef J.Y. Kim, K. Lee, N.E. Coates, D. Moses, T.Q. Nguyen, M. Dante, A.J. Heeger, Efficient tandem polymer solar cells fabricated by all-solution processing. Science 317(5835), 222–225 (2007)CrossRef
27.
go back to reference H.H. Cho, C.H. Cho, H. Kang, H. Yu, J.H. Oh, B.J. Kim, Molecular structure-device performance relationship in polymer solar cells based on indene-C 60 bis-adduct derivatives. Korean J. Chem. Eng. 32(2), 261–267 (2015)CrossRef H.H. Cho, C.H. Cho, H. Kang, H. Yu, J.H. Oh, B.J. Kim, Molecular structure-device performance relationship in polymer solar cells based on indene-C 60 bis-adduct derivatives. Korean J. Chem. Eng. 32(2), 261–267 (2015)CrossRef
28.
go back to reference K.S. Novoselov, A.K. Geim, S.V. Morozov, D.A. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef K.S. Novoselov, A.K. Geim, S.V. Morozov, D.A. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, Electric field effect in atomically thin carbon films. Science 306(5696), 666–669 (2004)CrossRef
29.
go back to reference K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Fal’ko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A.K. Geim, 2006. Unconventional quantum Hall effect and Berry’s phase of 2pi in bilayer graphene. Nat. Phys. 2, 177–180CrossRef K.S. Novoselov, E. McCann, S.V. Morozov, V.I. Fal’ko, M.I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, A.K. Geim, 2006. Unconventional quantum Hall effect and Berry’s phase of 2pi in bilayer graphene. Nat. Phys. 2, 177–180CrossRef
30.
go back to reference K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum Hall effect in graphene. Science 315(5817), 1379–1379 (2007)CrossRef K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim, Room-temperature quantum Hall effect in graphene. Science 315(5817), 1379–1379 (2007)CrossRef
31.
go back to reference K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197 (2005)CrossRef K.S. Novoselov, A.K. Geim, S. Morozov, D. Jiang, M. Katsnelson, I. Grigorieva, S. Dubonos, A.A. Firsov, Two-dimensional gas of massless Dirac fermions in graphene. Nature 438(7065), 197 (2005)CrossRef
32.
go back to reference V.P. Gusynin, S.G. Sharapov, Unconventional integer quantum Hall effect in graphene. Phys. Rev. Lett. 95(14), 146801 (2005)CrossRef V.P. Gusynin, S.G. Sharapov, Unconventional integer quantum Hall effect in graphene. Phys. Rev. Lett. 95(14), 146801 (2005)CrossRef
33.
go back to reference Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201 (2005)CrossRef Y. Zhang, Y.W. Tan, H.L. Stormer, P. Kim, Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438(7065), 201 (2005)CrossRef
34.
go back to reference F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)CrossRef F. Bonaccorso, Z. Sun, T. Hasan, A.C. Ferrari, Graphene photonics and optoelectronics. Nat. Photonics 4(9), 611–622 (2010)CrossRef
35.
go back to reference D. Yu, L. Dai, Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1(2), 467–470 (2009)CrossRef D. Yu, L. Dai, Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 1(2), 467–470 (2009)CrossRef
36.
go back to reference D. Yu, Y. Yang, M. Durstock, J.B. Baek, L. Dai, Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices. ACS Nano 4(10), 5633–5640 (2010)CrossRef D. Yu, Y. Yang, M. Durstock, J.B. Baek, L. Dai, Soluble P3HT-grafted graphene for efficient bilayer-heterojunction photovoltaic devices. ACS Nano 4(10), 5633–5640 (2010)CrossRef
37.
go back to reference K.P. Loh, Q. Bao, P.K. Ang, J. Yang, The chemistry of graphene. J. Mater. Chem. 20(12), 2277–2289 (2010)CrossRef K.P. Loh, Q. Bao, P.K. Ang, J. Yang, The chemistry of graphene. J. Mater. Chem. 20(12), 2277–2289 (2010)CrossRef
38.
go back to reference X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14), 1876–1902 (2011)CrossRef X. Huang, Z. Yin, S. Wu, X. Qi, Q. He, Q. Zhang, Q. Yan, F. Boey, H. Zhang, Graphene-based materials: synthesis, characterization, properties, and applications. Small 7(14), 1876–1902 (2011)CrossRef
39.
go back to reference V. Skrypnychuk, N. Boulanger, V. Yu, M. Hilke, S.C. Mannsfeld, M.F. Toney, D.R. Barbero, Enhanced vertical charge transport in a semiconducting P3HT thin film on single layer graphene. Adv. Funct. Mater. 25(5), 664–670 (2015)CrossRef V. Skrypnychuk, N. Boulanger, V. Yu, M. Hilke, S.C. Mannsfeld, M.F. Toney, D.R. Barbero, Enhanced vertical charge transport in a semiconducting P3HT thin film on single layer graphene. Adv. Funct. Mater. 25(5), 664–670 (2015)CrossRef
40.
go back to reference D.H. Kim, H.S. Lee, H.J. Shin, Y.S. Bae, K.H. Lee, S.W. Kim, D. Choi, J.Y. Choi, Graphene surface induced specific self-assembly of poly (3-hexylthiophene) for nanohybrid optoelectronics: from first-principles calculation to experimental characterizations. Soft Matter 9(22), 5355–5360 (2013)CrossRef D.H. Kim, H.S. Lee, H.J. Shin, Y.S. Bae, K.H. Lee, S.W. Kim, D. Choi, J.Y. Choi, Graphene surface induced specific self-assembly of poly (3-hexylthiophene) for nanohybrid optoelectronics: from first-principles calculation to experimental characterizations. Soft Matter 9(22), 5355–5360 (2013)CrossRef
41.
go back to reference C. Petit, M. Seredych, T.J. Bandosz, Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J. Mater. Chem. 19(48), 9176–9185 (2009)CrossRef C. Petit, M. Seredych, T.J. Bandosz, Revisiting the chemistry of graphite oxides and its effect on ammonia adsorption. J. Mater. Chem. 19(48), 9176–9185 (2009)CrossRef
42.
go back to reference A. Alnuaimi, I. Almansouri, I. Saadat, A. Nayfeh, High performance graphene-silicon Schottky junction solar cells with HfO2 interfacial layer grown by atomic layer deposition. Sol. Energy 164, 174–179 (2018)CrossRef A. Alnuaimi, I. Almansouri, I. Saadat, A. Nayfeh, High performance graphene-silicon Schottky junction solar cells with HfO2 interfacial layer grown by atomic layer deposition. Sol. Energy 164, 174–179 (2018)CrossRef
Metadata
Title
RETRACTED ARTICLE: Graphenic nanosheets sandwiched between crystalline cakes of poly(3-hexylthiophene) via simultaneous grafting/crystallization and their applications in active photovoltaic layers
Authors
Mohammad Zeighami
Samira Agbolaghi
Ali Hamdast
Raana Sarvari
Publication date
06-03-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 7/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01019-3

Other articles of this Issue 7/2019

Journal of Materials Science: Materials in Electronics 7/2019 Go to the issue