Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 7/2019

04-03-2019

Synthesis of special acrylic nanofibers as an appropriate precursor for conductive carbon nanofibers

Authors: Komeil Nasouri, Ahmad Mousavi Shoushtari, Fariba Namazi

Published in: Journal of Materials Science: Materials in Electronics | Issue 7/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Electrospinning technique is a significant approach used for producing special acrylic nanofibers (SANFs) through applying electrostatic field. SANFs were electrospun from polyacrylonitrile (PAN) copolymer solutions to be used as a precursor for carbon nanofibers (CNFs). The Box–Benkhen design (BBD) was used to elucidate the effects of the acrylic concentration (wt%), electrospinning voltage (kV), and spinning distance (cm) on the SANFs surface morphology and optimize these parameters. Based on BBD model the optimum SANFs diameter of 292 nm and 14.20% coefficient of variation, were collected at 9.3 wt% PAN concentration, 14 kV applied voltage, and 20 cm spinning distance. The optimized SANFs manufactured under BBD settings were specified by scanning electron microscope (SEM), mechanical tester, and differential scanning calorimeter (DSC). The optimized SANFs was stabilized in air and then carbonized in inert atmosphere at 800, 1000, and 1200 °C, respectively. The electrical conductivity of CNFs samples obtained from SANFs at 800 °C carbonization temperature is 2.31 × 10−2 S/cm, which is increased to 2.60 × 10+1 S/cm at 1200 °C. The results indicated that, the optimized SANFs possessed the most desired morphological properties, mechanical characteristics, and thermal stability; and thus they are appropriate for the development of high-performance CNFs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference S.K. Nataraj, K.S. Yang, T.M. Aminabhavi, Polyacrylonitrile-based nanofibers—a state of the art review. Prog. Polym. Sci. 37, 487–513 (2012)CrossRef S.K. Nataraj, K.S. Yang, T.M. Aminabhavi, Polyacrylonitrile-based nanofibers—a state of the art review. Prog. Polym. Sci. 37, 487–513 (2012)CrossRef
2.
go back to reference X. Li, X. Ji, C. He, Evolution of the morphological and structural properties of plasticized spinning polyacrylonitrile fibers during the stabilization process. RSC Adv. 5, 81399–81406 (2015)CrossRef X. Li, X. Ji, C. He, Evolution of the morphological and structural properties of plasticized spinning polyacrylonitrile fibers during the stabilization process. RSC Adv. 5, 81399–81406 (2015)CrossRef
3.
go back to reference J. Liu, L. He, S. Ma, J. Liang, Y. Zhao, H. Fong, Effects of chemical composition and post-spinning stretching process on the morphological, structural, and thermo-chemical properties of electrospun polyacrylonitrile copolymer precursor nanofibers. Polymer 61, 20–28 (2015)CrossRef J. Liu, L. He, S. Ma, J. Liang, Y. Zhao, H. Fong, Effects of chemical composition and post-spinning stretching process on the morphological, structural, and thermo-chemical properties of electrospun polyacrylonitrile copolymer precursor nanofibers. Polymer 61, 20–28 (2015)CrossRef
4.
go back to reference Y. Zhang, N. Tajaddod, K. Song, M.L. Minus, Low temperature graphitization of interphase polyacrylonitrile (PAN). Carbon 91, 479–493 (2015)CrossRef Y. Zhang, N. Tajaddod, K. Song, M.L. Minus, Low temperature graphitization of interphase polyacrylonitrile (PAN). Carbon 91, 479–493 (2015)CrossRef
5.
go back to reference E. Ismar, A.S. Sarac, Synthesis and characterization of poly (acrylonitrile-co-acrylic acid) as precursor of carbon nanofibers. Polym. Adv. Technol. 27, 1383–1388 (2016)CrossRef E. Ismar, A.S. Sarac, Synthesis and characterization of poly (acrylonitrile-co-acrylic acid) as precursor of carbon nanofibers. Polym. Adv. Technol. 27, 1383–1388 (2016)CrossRef
6.
go back to reference J.H. Lee, J. Manuel, H. Choi, W.H. Park, J.H. Ahn, Partially oxidized polyacrylonitrile nanofibrous membrane as a thermally stable separator for lithium ion batteries. Polymer 68, 335–343 (2016)CrossRef J.H. Lee, J. Manuel, H. Choi, W.H. Park, J.H. Ahn, Partially oxidized polyacrylonitrile nanofibrous membrane as a thermally stable separator for lithium ion batteries. Polymer 68, 335–343 (2016)CrossRef
7.
go back to reference S.Y. Kim, S. Lee, S. Park, S.M. Jo, H.S. Lee, H.I. Joh, Continuous and rapid stabilization of polyacrylonitrile fiber bundles assisted by atmospheric pressure plasma for fabricating large-tow carbon fibers. Carbon 94, 412–416 (2015)CrossRef S.Y. Kim, S. Lee, S. Park, S.M. Jo, H.S. Lee, H.I. Joh, Continuous and rapid stabilization of polyacrylonitrile fiber bundles assisted by atmospheric pressure plasma for fabricating large-tow carbon fibers. Carbon 94, 412–416 (2015)CrossRef
8.
go back to reference P. Bajaj, A.K. Roopanwal, Thermal stabilization of acrylic precursors for the product ion of carbon fibers: an overview. J. Macromol. Sci. C 37, 97–147 (1997)CrossRef P. Bajaj, A.K. Roopanwal, Thermal stabilization of acrylic precursors for the product ion of carbon fibers: an overview. J. Macromol. Sci. C 37, 97–147 (1997)CrossRef
9.
go back to reference E.A. Morris, M.C. Weisenberger, S.B. Bradley, M.G. Abdallah, S.J. Mecham, P. Pisipati, J.E. McGrath, Synthesis, spinning, and properties of very high molecular weight poly (acrylonitrile-co-methyl acrylate) for high performance precursors for carbon fiber. Polymer 55, 6471–6482 (2014)CrossRef E.A. Morris, M.C. Weisenberger, S.B. Bradley, M.G. Abdallah, S.J. Mecham, P. Pisipati, J.E. McGrath, Synthesis, spinning, and properties of very high molecular weight poly (acrylonitrile-co-methyl acrylate) for high performance precursors for carbon fiber. Polymer 55, 6471–6482 (2014)CrossRef
10.
go back to reference L. Zhang, A. Aboagye, A. Kelkar, C. Lai, H. Fong, A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 49, 463–480 (2014)CrossRef L. Zhang, A. Aboagye, A. Kelkar, C. Lai, H. Fong, A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 49, 463–480 (2014)CrossRef
11.
go back to reference J.H. Lee, D.W. Shin, K.B. Nam, Y.H. Gim, H.S. Ko, D.K. Seo, G.H. lee, Y.H. Kim, S.W. Kim, T.S. Oh, J.B. Yoo, Continuous bundles of aligned electrospun PAN nanofiber using electrostatic spiral collector and converging coil. Polymer 84, 52–58 (2016)CrossRef J.H. Lee, D.W. Shin, K.B. Nam, Y.H. Gim, H.S. Ko, D.K. Seo, G.H. lee, Y.H. Kim, S.W. Kim, T.S. Oh, J.B. Yoo, Continuous bundles of aligned electrospun PAN nanofiber using electrostatic spiral collector and converging coil. Polymer 84, 52–58 (2016)CrossRef
12.
go back to reference K. Nasouri, H. Bahrambeygi, A. Rabbi, A.M. Shoushtari, A. Kaflou, Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks. J. Appl. Polym. Sci. 126, 127–135 (2012)CrossRef K. Nasouri, H. Bahrambeygi, A. Rabbi, A.M. Shoushtari, A. Kaflou, Modeling and optimization of electrospun PAN nanofiber diameter using response surface methodology and artificial neural networks. J. Appl. Polym. Sci. 126, 127–135 (2012)CrossRef
13.
go back to reference K. Nasouri, A.M. Shoushtari, A. Kaflou, Investigation of polyacrylonitrile electrospun nanofibres morphology as a function of polymer concentration, viscosity and Berry number. Micro Nano Lett 7, 423–426 (2012)CrossRef K. Nasouri, A.M. Shoushtari, A. Kaflou, Investigation of polyacrylonitrile electrospun nanofibres morphology as a function of polymer concentration, viscosity and Berry number. Micro Nano Lett 7, 423–426 (2012)CrossRef
14.
go back to reference E.J. Ra, E.R. Pinero, Y.H. Lee, F. Beguin, High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon 47, 2984–2992 (2009)CrossRef E.J. Ra, E.R. Pinero, Y.H. Lee, F. Beguin, High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper. Carbon 47, 2984–2992 (2009)CrossRef
15.
go back to reference S.-J. Park, H.-K. An, Optimization of fabrication parameters for nanofibrous composite membrane using response surface methodology. Desalin. Water Treat. 57, 20188–20198 (2016)CrossRef S.-J. Park, H.-K. An, Optimization of fabrication parameters for nanofibrous composite membrane using response surface methodology. Desalin. Water Treat. 57, 20188–20198 (2016)CrossRef
16.
go back to reference S.Y. Gu, J. Ren, G.J. Vancso, Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. Eur. Polym. J. 41, 2559–2568 (2005)CrossRef S.Y. Gu, J. Ren, G.J. Vancso, Process optimization and empirical modeling for electrospun polyacrylonitrile (PAN) nanofiber precursor of carbon nanofibers. Eur. Polym. J. 41, 2559–2568 (2005)CrossRef
17.
go back to reference H.M. Khanlou, B.C. Ang, S. Talebian, M.M. Barzani, M. Silakhori, H. Fauzi, Multi-response analysis in the processing of poly (methyl methacrylate) nano-fibres membrane by electrospinning based on response surface methodology: fibre diameter and bead formation. Measurement 65, 193–206 (2015)CrossRef H.M. Khanlou, B.C. Ang, S. Talebian, M.M. Barzani, M. Silakhori, H. Fauzi, Multi-response analysis in the processing of poly (methyl methacrylate) nano-fibres membrane by electrospinning based on response surface methodology: fibre diameter and bead formation. Measurement 65, 193–206 (2015)CrossRef
18.
go back to reference M. Khamforoush, T. Asgari, T. Hatami, F. Dabirian, The influences of collector diameter, spinneret rotational speed, voltage, and polymer concentration on the degree of nanofibers alignment generated by electrocentrifugal spinning method: Modeling and optimization by response surface methodology. Korean J. Chem. Eng. 31, 1695–1706 (2014)CrossRef M. Khamforoush, T. Asgari, T. Hatami, F. Dabirian, The influences of collector diameter, spinneret rotational speed, voltage, and polymer concentration on the degree of nanofibers alignment generated by electrocentrifugal spinning method: Modeling and optimization by response surface methodology. Korean J. Chem. Eng. 31, 1695–1706 (2014)CrossRef
19.
go back to reference A.A. Ali, M.M. Eltabey, W.M. Farouk, S.H. Zoalfakar, Electrospun precursor carbon nanofibers optimization by using response surface methodology. J. Electrostat. 72, 462–469 (2014)CrossRef A.A. Ali, M.M. Eltabey, W.M. Farouk, S.H. Zoalfakar, Electrospun precursor carbon nanofibers optimization by using response surface methodology. J. Electrostat. 72, 462–469 (2014)CrossRef
20.
go back to reference J. Brandrup, E.H. Immergut, E.A. Grulke, Polymer Handbook, vol. VII, 4th edn. (Wiley, New York, 1999) J. Brandrup, E.H. Immergut, E.A. Grulke, Polymer Handbook, vol. VII, 4th edn. (Wiley, New York, 1999)
21.
go back to reference M. Askari, B. Rezaei, A.M. Shoushtari, P. Noorpanah, M. Abdouss, M. Ghani, Fabrication of high performance chitosan/polyvinyl alcohol nanofibrous mat with controlled morphology and optimised diameter. Can. J. Chem. Eng. 92, 1008–1015 (2014)CrossRef M. Askari, B. Rezaei, A.M. Shoushtari, P. Noorpanah, M. Abdouss, M. Ghani, Fabrication of high performance chitosan/polyvinyl alcohol nanofibrous mat with controlled morphology and optimised diameter. Can. J. Chem. Eng. 92, 1008–1015 (2014)CrossRef
22.
go back to reference C.-F.J. Kuo, W.L. Lan, S.H. Chen, C.-Y. Chen, Property modification and process parameter optimization design of polylactic acid composite materials Part II: application of response surface methodology and multi-objective particle swarm optimization in the processing of polylactic acid composite fiber. Text. Res. J. 85, 687–700 (2015)CrossRef C.-F.J. Kuo, W.L. Lan, S.H. Chen, C.-Y. Chen, Property modification and process parameter optimization design of polylactic acid composite materials Part II: application of response surface methodology and multi-objective particle swarm optimization in the processing of polylactic acid composite fiber. Text. Res. J. 85, 687–700 (2015)CrossRef
23.
go back to reference N. Ghobadi, T. Mohammadi, N. Kasiri, M. Kazemimoghadam, Modified poly (vinyl alcohol)/chitosan blended membranes for isopropanol dehydration via pervaporation: synthesis optimization and modeling by response surface methodology. J. Appl. Polym. Sci. 133, 44587–44602 (2016) N. Ghobadi, T. Mohammadi, N. Kasiri, M. Kazemimoghadam, Modified poly (vinyl alcohol)/chitosan blended membranes for isopropanol dehydration via pervaporation: synthesis optimization and modeling by response surface methodology. J. Appl. Polym. Sci. 133, 44587–44602 (2016)
24.
go back to reference C. Sen, M. Das, Self-supporting-film from starch, poly (vinyl alcohol), and glutaraldehyde: optimization of composition using response surface methodology. J. Appl. Polym. Sci. 134, 44436–44446 (2017) C. Sen, M. Das, Self-supporting-film from starch, poly (vinyl alcohol), and glutaraldehyde: optimization of composition using response surface methodology. J. Appl. Polym. Sci. 134, 44436–44446 (2017)
25.
go back to reference S.O. Gonen, M.E. Taygun, S. Kucukbayrak, Evaluation of the factors influencing the resultant diameter of the electrospun gelatin/sodium alginate nanofibers via Box–Behnken design. Mater. Sci. Eng. C 58, 709–723 (2016)CrossRef S.O. Gonen, M.E. Taygun, S. Kucukbayrak, Evaluation of the factors influencing the resultant diameter of the electrospun gelatin/sodium alginate nanofibers via Box–Behnken design. Mater. Sci. Eng. C 58, 709–723 (2016)CrossRef
26.
go back to reference M. Ahmadipourroudposht, E. Fallahiarezoudar, N.M. Yusof, A. Idris, Application of response surface methodology in optimization of electrospinning process to fabricate (ferrofluid/polyvinyl alcohol) magnetic nanofibers. Mater. Sci. Eng. C 50, 234–241 (2015)CrossRef M. Ahmadipourroudposht, E. Fallahiarezoudar, N.M. Yusof, A. Idris, Application of response surface methodology in optimization of electrospinning process to fabricate (ferrofluid/polyvinyl alcohol) magnetic nanofibers. Mater. Sci. Eng. C 50, 234–241 (2015)CrossRef
27.
go back to reference K. Nasouri, A.M. Shoushtari, M. Khamforoush, Comparison between artificial neural network and response surface methodology in the prediction of the production rate of polyacrylonitrile electrospun nanofibers. Fiber Polym. 14, 1849–1856 (2013)CrossRef K. Nasouri, A.M. Shoushtari, M. Khamforoush, Comparison between artificial neural network and response surface methodology in the prediction of the production rate of polyacrylonitrile electrospun nanofibers. Fiber Polym. 14, 1849–1856 (2013)CrossRef
28.
go back to reference T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, P. Supaphol, Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur. Polym. J. 41, 409–421 (2005)CrossRef T. Jarusuwannapoom, W. Hongrojjanawiwat, S. Jitjaicham, L. Wannatong, M. Nithitanakul, C. Pattamaprom, P. Koombhongse, R. Rangkupan, P. Supaphol, Effect of solvents on electro-spinnability of polystyrene solutions and morphological appearance of resulting electrospun polystyrene fibers. Eur. Polym. J. 41, 409–421 (2005)CrossRef
29.
go back to reference K. Nasouri, A.M. Shoushtari, M.R.M. Mojtahedi, Effects of polymer/solvent systems on electrospun polyvinylpyrrolidone nanofiber morphology and diameter. Polym. Sci. A 57, 747–755 (2015)CrossRef K. Nasouri, A.M. Shoushtari, M.R.M. Mojtahedi, Effects of polymer/solvent systems on electrospun polyvinylpyrrolidone nanofiber morphology and diameter. Polym. Sci. A 57, 747–755 (2015)CrossRef
30.
go back to reference C. Wang, Y.-W. Cheng, C.-H. Hsu, H.-S. Chien, S.-Y. Tsou, How to manipulate the electrospinning jet with controlled properties to obtain uniform fibers with the smallest diameter?—a brief discussion of solution electrospinning process. J. Polym. Res. 18, 111–123 (2011)CrossRef C. Wang, Y.-W. Cheng, C.-H. Hsu, H.-S. Chien, S.-Y. Tsou, How to manipulate the electrospinning jet with controlled properties to obtain uniform fibers with the smallest diameter?—a brief discussion of solution electrospinning process. J. Polym. Res. 18, 111–123 (2011)CrossRef
31.
go back to reference M.A. Miri, J. Movaffagh, M.B.H. Najafi, M.N. Najafi, B. Ghorani, A. Koocheki, Optimization of elecrospinning process of zein using central composite design. Fiber Polym. 17, 769–777 (2016)CrossRef M.A. Miri, J. Movaffagh, M.B.H. Najafi, M.N. Najafi, B. Ghorani, A. Koocheki, Optimization of elecrospinning process of zein using central composite design. Fiber Polym. 17, 769–777 (2016)CrossRef
32.
go back to reference K. Nasouri, A.M. Shoushtari, M.R.M. Mojtahedi, Evaluation of effective electrospinning parameters controlling polyvinylpyrrolidone nanofibers surface morphology via response surface methodology. Fiber Polym. 16, 1941–1954 (2015)CrossRef K. Nasouri, A.M. Shoushtari, M.R.M. Mojtahedi, Evaluation of effective electrospinning parameters controlling polyvinylpyrrolidone nanofibers surface morphology via response surface methodology. Fiber Polym. 16, 1941–1954 (2015)CrossRef
33.
go back to reference M. Ziabari, V. Mottaghitala, A.K. Haghi, A new approach for optimization of electrospun nanofiber formation process. Korean J. Chem. Eng. 27, 340–354 (2010)CrossRef M. Ziabari, V. Mottaghitala, A.K. Haghi, A new approach for optimization of electrospun nanofiber formation process. Korean J. Chem. Eng. 27, 340–354 (2010)CrossRef
34.
go back to reference N. Sarlak, M.A.F. Nejad, S. Shakhesi, K. Shabani, Effects of electrospinning parameters on titanium dioxide nanofibers diameter and morphology: An investigation by Box–Wilson central composite design (CCD). Chem. Eng. J. 210, 410–416 (2012)CrossRef N. Sarlak, M.A.F. Nejad, S. Shakhesi, K. Shabani, Effects of electrospinning parameters on titanium dioxide nanofibers diameter and morphology: An investigation by Box–Wilson central composite design (CCD). Chem. Eng. J. 210, 410–416 (2012)CrossRef
35.
go back to reference A. Rabbi, K. Nasouri, H. Bahrambeygi, A.M. Shoushtari, M.R. Babaei, RSM and ANN approaches for modeling and optimizing of electrospun polyurethane nanofibers morphology. Fiber Polym. 13, 1007–1014 (2012)CrossRef A. Rabbi, K. Nasouri, H. Bahrambeygi, A.M. Shoushtari, M.R. Babaei, RSM and ANN approaches for modeling and optimizing of electrospun polyurethane nanofibers morphology. Fiber Polym. 13, 1007–1014 (2012)CrossRef
36.
go back to reference J.-P. Chen, K.-H. Ho, Y.-P. Chiang, K.-W. Wu, Fabrication of electrospun poly (methyl methacrylate) nanofibrous membranes by statistical approach for application in enzyme immobilization. J. Membr Sci. 340, 9–15 (2009)CrossRef J.-P. Chen, K.-H. Ho, Y.-P. Chiang, K.-W. Wu, Fabrication of electrospun poly (methyl methacrylate) nanofibrous membranes by statistical approach for application in enzyme immobilization. J. Membr Sci. 340, 9–15 (2009)CrossRef
37.
go back to reference S.-Y. Gu, J. Ren, Process optimization and empirical modeling for electrospun poly (D, L-lactide) fibers using response surface methodology. Macromol. Mater. Eng. 290, 1097–1105 (2005)CrossRef S.-Y. Gu, J. Ren, Process optimization and empirical modeling for electrospun poly (D, L-lactide) fibers using response surface methodology. Macromol. Mater. Eng. 290, 1097–1105 (2005)CrossRef
38.
go back to reference S. Zhao, X. Wu, L. Wang, Y. Huang, Electrospinning of ethyl–cyanoethyl cellulose/tetrahydrofuran solutions. J. Appl. Polym. Sci. 91, 242–246 (2004)CrossRef S. Zhao, X. Wu, L. Wang, Y. Huang, Electrospinning of ethyl–cyanoethyl cellulose/tetrahydrofuran solutions. J. Appl. Polym. Sci. 91, 242–246 (2004)CrossRef
39.
go back to reference S. Varala, B. Dharanija, B. Satyavathi, V.V.B. Rao, R. Parthasarathy, New biosorbent based on deoiled karanja seed cake in biosorption studies of Zr (IV): optimization using Box–Behnken method in response surface methodology with desirability approach. Chem. Eng. J. 302, 786–800 (2016)CrossRef S. Varala, B. Dharanija, B. Satyavathi, V.V.B. Rao, R. Parthasarathy, New biosorbent based on deoiled karanja seed cake in biosorption studies of Zr (IV): optimization using Box–Behnken method in response surface methodology with desirability approach. Chem. Eng. J. 302, 786–800 (2016)CrossRef
40.
go back to reference H.C. Liu, A.-T. Chien, B.A. Newcomb, A.A.B. Davijani, S. Kumar, Stabilization kinetics of gel spun polyacrylonitrile/lignin blend fiber. Carbon 101, 382–389 (2016)CrossRef H.C. Liu, A.-T. Chien, B.A. Newcomb, A.A.B. Davijani, S. Kumar, Stabilization kinetics of gel spun polyacrylonitrile/lignin blend fiber. Carbon 101, 382–389 (2016)CrossRef
41.
go back to reference R. Padmavathi, D. Sangeetha, Synthesis and characterization of electrospun carbon nanofibersupported Pt catalyst for fuel cells. Electrochimic. Acta 112, 1–13 (2013)CrossRef R. Padmavathi, D. Sangeetha, Synthesis and characterization of electrospun carbon nanofibersupported Pt catalyst for fuel cells. Electrochimic. Acta 112, 1–13 (2013)CrossRef
42.
go back to reference Y. Xue, J. Liu, J. Liang, Correlative study of critical reactions in polyacrylonitrile based carbon fiber precursors during thermal-oxidative stabilization. Polym. Degrad. Stabil. 98, 219–229 (2013)CrossRef Y. Xue, J. Liu, J. Liang, Correlative study of critical reactions in polyacrylonitrile based carbon fiber precursors during thermal-oxidative stabilization. Polym. Degrad. Stabil. 98, 219–229 (2013)CrossRef
43.
go back to reference S. Liu, K. Han, L. Chen, Y. Zheng, M. Yu, Structure and properties of partially cyclized polyacrylonitrile-based carbon fiber–precursor fiber prepared by melt-spun with ionic liquid as the medium of processing. Polym. Eng. Sci. 55, 2722–2728 (2015)CrossRef S. Liu, K. Han, L. Chen, Y. Zheng, M. Yu, Structure and properties of partially cyclized polyacrylonitrile-based carbon fiber–precursor fiber prepared by melt-spun with ionic liquid as the medium of processing. Polym. Eng. Sci. 55, 2722–2728 (2015)CrossRef
Metadata
Title
Synthesis of special acrylic nanofibers as an appropriate precursor for conductive carbon nanofibers
Authors
Komeil Nasouri
Ahmad Mousavi Shoushtari
Fariba Namazi
Publication date
04-03-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 7/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-01018-4

Other articles of this Issue 7/2019

Journal of Materials Science: Materials in Electronics 7/2019 Go to the issue