Skip to main content
Top

2023 | OriginalPaper | Chapter

Parametric Tuning of Natural Frequencies of Tuning Fork Gyroscope

Authors : Rakesha Chandra Dash, Rakesh Tirupathi, P. Krishna Menon, Ashok Kumar Pandey

Published in: Microactuators, Microsensors and Micromechanisms

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The sequence of mode shapes play a vital role in designing a dual mass tuning fork gyroscope (TFG). To avoid loss of energy, a desired separation of frequencies between operating modes (out-of-phase drive and sense) and parasitic modes is required. Hence, regulation of mode shapes is an essential criterion in TFG design. In the present work, the influence of several crucial parameters such as coupling mechanisms and dimensions of folded beams on the in-plane frequencies are studied numerically by using finite element based COMSOL software.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Yazdi, N., Ayazi, F., Najafi, K.: Micromachined inertial sensors. Proc. IEEE 86(8), 1640–1659 (1998)CrossRef Yazdi, N., Ayazi, F., Najafi, K.: Micromachined inertial sensors. Proc. IEEE 86(8), 1640–1659 (1998)CrossRef
2.
go back to reference Xia, D., Yu, C., Sensors, L.K.: undefined,: the development of micromachined gyroscope structure and circuitry technology. Mdpi. Com. 14, 1394–1473 (2014) Xia, D., Yu, C., Sensors, L.K.: undefined,: the development of micromachined gyroscope structure and circuitry technology. Mdpi. Com. 14, 1394–1473 (2014)
3.
go back to reference Söderkvist, J.: Micromachined gyroscopes. Sens. Actuators A Phys. 43, 65–71 (1994)CrossRef Söderkvist, J.: Micromachined gyroscopes. Sens. Actuators A Phys. 43, 65–71 (1994)CrossRef
4.
go back to reference Passaro, V.M.N., Cuccovillo, A., Vaiani, L., De Carlo, M., Campanella, C.E.: Gyroscope technology and applications: a review in the industrial perspective. Sensors 17, 2284 (2017)CrossRef Passaro, V.M.N., Cuccovillo, A., Vaiani, L., De Carlo, M., Campanella, C.E.: Gyroscope technology and applications: a review in the industrial perspective. Sensors 17, 2284 (2017)CrossRef
5.
go back to reference Ma, W., Lin, Y., Liu, S., Zheng, X., Jin, Z.: A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique. J. Micromech. Microeng. Iopscience. Iop. Org. 27(2) (2016) Ma, W., Lin, Y., Liu, S., Zheng, X., Jin, Z.: A novel oscillation control for MEMS vibratory gyroscopes using a modified electromechanical amplitude modulation technique. J. Micromech. Microeng. Iopscience. Iop. Org. 27(2) (2016)
6.
go back to reference Pang, G., Liu, H.: Evaluation of a low-cost MEMS accelerometer for distance measurement. J. Intell. Robot. Syst. Theory Appl. 30, 249–265 (2001)CrossRefMATH Pang, G., Liu, H.: Evaluation of a low-cost MEMS accelerometer for distance measurement. J. Intell. Robot. Syst. Theory Appl. 30, 249–265 (2001)CrossRefMATH
7.
go back to reference Wu, J., Zhou, Z., Fourati, H., Cheng, Y.: A super fast attitude determination algorithm for consumer-level accelerometer and magnetometer. IEEE Trans. Consum. Electron. 64(3), 375–381 (2018)CrossRef Wu, J., Zhou, Z., Fourati, H., Cheng, Y.: A super fast attitude determination algorithm for consumer-level accelerometer and magnetometer. IEEE Trans. Consum. Electron. 64(3), 375–381 (2018)CrossRef
8.
go back to reference Nguyen, M.N., Ha, N.S., Nguyen, L.Q., Chu, H.M., Vu, H.N.: Z-axis micromachined tuning fork gyroscope with low air damping. Micromachines 8, 42 (2017)CrossRef Nguyen, M.N., Ha, N.S., Nguyen, L.Q., Chu, H.M., Vu, H.N.: Z-axis micromachined tuning fork gyroscope with low air damping. Micromachines 8, 42 (2017)CrossRef
9.
go back to reference Yang, C., Li, H.: Digital control system for the MEMS tuning fork gyroscope based on synchronous integral demodulator. IEEE Sens. J. 15(10), 5755–5764 (2015)CrossRef Yang, C., Li, H.: Digital control system for the MEMS tuning fork gyroscope based on synchronous integral demodulator. IEEE Sens. J. 15(10), 5755–5764 (2015)CrossRef
10.
go back to reference Guan, Y., Gao, S., Liu, H., Jin, L., Niu, S.: Design and vibration sensitivity analysis of a MEMS tuning fork gyroscope with an anchored diamond coupling mechanism. Sensors 16, 468 (2016)CrossRef Guan, Y., Gao, S., Liu, H., Jin, L., Niu, S.: Design and vibration sensitivity analysis of a MEMS tuning fork gyroscope with an anchored diamond coupling mechanism. Sensors 16, 468 (2016)CrossRef
11.
go back to reference Prikhodko, I., Zotov, S., Trusov, A., Shkel, A.M.: Foucault pendulum on a chip: rate integrating silicon MEMS gyroscope. Elsevier. 177(2012), 67–78 (2012) Prikhodko, I., Zotov, S., Trusov, A., Shkel, A.M.: Foucault pendulum on a chip: rate integrating silicon MEMS gyroscope. Elsevier. 177(2012), 67–78 (2012)
12.
go back to reference Tatar, E., Mukherjee, T., Fedder, G.K.: Stress effects and compensation of bias drift in a MEMS vibratory-rate gyroscope. J. Microelectromech. Syst. 26(3), 569–579 Tatar, E., Mukherjee, T., Fedder, G.K.: Stress effects and compensation of bias drift in a MEMS vibratory-rate gyroscope. J. Microelectromech. Syst. 26(3), 569–579
13.
go back to reference Park, B., Han, K., Lee, S., Yu, M.-J.: Analysis of compensation for a g-sensitivity scale-factor error for a MEMS vibratory gyroscope. Iopscience. Iop. Org 25(11), 115006 (2015) Park, B., Han, K., Lee, S., Yu, M.-J.: Analysis of compensation for a g-sensitivity scale-factor error for a MEMS vibratory gyroscope. Iopscience. Iop. Org 25(11), 115006 (2015)
14.
go back to reference Sonmezoglu, S., Alper, S., Akin, T.: An automatically mode-matched MEMS gyroscope with wide and tunable bandwidth. Ieeexplore. Ieee, Org (2014)CrossRef Sonmezoglu, S., Alper, S., Akin, T.: An automatically mode-matched MEMS gyroscope with wide and tunable bandwidth. Ieeexplore. Ieee, Org (2014)CrossRef
15.
go back to reference Zhou, X., Xiao, D., Wu, X., Wu, Y., Hou, Z., He, K., Li, Q.: Stiffness-mass decoupled silicon disk resonator for high resolution gyroscopic application with long decay time constant (8.695 s). Appl. Phys. Lett. 109 (2016) Zhou, X., Xiao, D., Wu, X., Wu, Y., Hou, Z., He, K., Li, Q.: Stiffness-mass decoupled silicon disk resonator for high resolution gyroscopic application with long decay time constant (8.695 s). Appl. Phys. Lett. 109 (2016)
16.
go back to reference Guan, Y., Gao, S., Jin, L., Cao, L.: Design and vibration sensitivity of a MEMS tuning fork gyroscope with anchored coupling mechanism. Microsyst. Technol. 22, 247–254 Guan, Y., Gao, S., Jin, L., Cao, L.: Design and vibration sensitivity of a MEMS tuning fork gyroscope with anchored coupling mechanism. Microsyst. Technol. 22, 247–254
17.
go back to reference Nusbaum, U., Rusnak, I., Klein, I.: Angular accelerometer-based inertial navigation system. Navigation. 66, 681–693 (2019)CrossRef Nusbaum, U., Rusnak, I., Klein, I.: Angular accelerometer-based inertial navigation system. Navigation. 66, 681–693 (2019)CrossRef
18.
go back to reference He, Q., Zeng, C., He, X., Xu, X., Lin, Z.: Measurement, undefined 2018, Calibrating accelerometers for space-stable inertial navigation systems at system level. Elsevier He, Q., Zeng, C., He, X., Xu, X., Lin, Z.: Measurement, undefined 2018, Calibrating accelerometers for space-stable inertial navigation systems at system level. Elsevier
19.
go back to reference El-Sheimy, N., Youssef, A.: Inertial sensors technologies for navigation applications: state of the art and future trends. Satell. Navig. 1 (2020) El-Sheimy, N., Youssef, A.: Inertial sensors technologies for navigation applications: state of the art and future trends. Satell. Navig. 1 (2020)
20.
go back to reference Petritoli, E., Leccese, F., Leccese, M.: Inertial navigation systems for UAV: Uncertainty and error measurements. Ieeexplore. IEEE, Org (2019) Petritoli, E., Leccese, F., Leccese, M.: Inertial navigation systems for UAV: Uncertainty and error measurements. Ieeexplore. IEEE, Org (2019)
21.
go back to reference Handtmann, M., Aigner, R., Meckes, A., Wachutka, G.K.M.: Sensitivity enhancement of MEMS inertial sensors using negative springs and active control. Sens. Actuators A Phys. 97–98, 153–160 (2002)CrossRef Handtmann, M., Aigner, R., Meckes, A., Wachutka, G.K.M.: Sensitivity enhancement of MEMS inertial sensors using negative springs and active control. Sens. Actuators A Phys. 97–98, 153–160 (2002)CrossRef
22.
go back to reference Masu, K., Machida, K., Yamane, D., Ito, H., Ishihara, N., Chang, T.-F.M., Sone, M., Shigeyama, R., Ogata, T., Miyake, Y.: (Invited) CMOS-MEMS based microgravity sensor and its application. ECS Trans. 97, 91–108 (2020)CrossRef Masu, K., Machida, K., Yamane, D., Ito, H., Ishihara, N., Chang, T.-F.M., Sone, M., Shigeyama, R., Ogata, T., Miyake, Y.: (Invited) CMOS-MEMS based microgravity sensor and its application. ECS Trans. 97, 91–108 (2020)CrossRef
23.
go back to reference Gabrielson, T.G.: Mechanical-thermal noise in micromachined acoustic and vibration sensors. Ieeexplore. IEEE Trans. Electronic, Dev (1993)CrossRef Gabrielson, T.G.: Mechanical-thermal noise in micromachined acoustic and vibration sensors. Ieeexplore. IEEE Trans. Electronic, Dev (1993)CrossRef
24.
go back to reference Cao, L., Li, J., Liu, X., Sun, F.Y.: Research on an anchor point lever beam coupling type tuning fork micro-gyroscope. Int. J. Precis. Eng. Manuf. 21, 1099–1111 (2020)CrossRef Cao, L., Li, J., Liu, X., Sun, F.Y.: Research on an anchor point lever beam coupling type tuning fork micro-gyroscope. Int. J. Precis. Eng. Manuf. 21, 1099–1111 (2020)CrossRef
25.
go back to reference Li, Z., Gao, S., Jin, L., Liu, H., Guan, Y., Peng, S.: Design and mechanical sensitivity analysis of a MEMS tuning fork gyroscope with an anchored leverage mechanism. Sensors (Basel). 19(16), 3455 (2019)CrossRef Li, Z., Gao, S., Jin, L., Liu, H., Guan, Y., Peng, S.: Design and mechanical sensitivity analysis of a MEMS tuning fork gyroscope with an anchored leverage mechanism. Sensors (Basel). 19(16), 3455 (2019)CrossRef
26.
go back to reference Bukhari, S.A.R., Saleem, M.M., Hamza, A., Bazaz, S.A.: A novel design of high resolution MEMS gyroscope using mode-localization in weakly coupled resonators. IEEE Access 9, 157597–157608 (2021)CrossRef Bukhari, S.A.R., Saleem, M.M., Hamza, A., Bazaz, S.A.: A novel design of high resolution MEMS gyroscope using mode-localization in weakly coupled resonators. IEEE Access 9, 157597–157608 (2021)CrossRef
Metadata
Title
Parametric Tuning of Natural Frequencies of Tuning Fork Gyroscope
Authors
Rakesha Chandra Dash
Rakesh Tirupathi
P. Krishna Menon
Ashok Kumar Pandey
Copyright Year
2023
DOI
https://doi.org/10.1007/978-3-031-20353-4_12