Skip to main content
Top
Published in: Neural Computing and Applications 5/2014

01-04-2014 | Original Article

Performance analysis of support vector machines classifiers in breast cancer mammography recognition

Authors: Ahmad Taher Azar, Shaimaa Ahmed El-Said

Published in: Neural Computing and Applications | Issue 5/2014

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Support vector machine (SVM) is a supervised machine learning approach that was recognized as a statistical learning apotheosis for the small-sample database. SVM has shown its excellent learning and generalization ability and has been extensively employed in many areas. This paper presents a performance analysis of six types of SVMs for the diagnosis of the classical Wisconsin breast cancer problem from a statistical point of view. The classification performance of standard SVM (St-SVM) is analyzed and compared with those of the other modified classifiers such as proximal support vector machine (PSVM) classifiers, Lagrangian support vector machines (LSVM), finite Newton method for Lagrangian support vector machine (NSVM), Linear programming support vector machines (LPSVM), and smooth support vector machine (SSVM). The experimental results reveal that these SVM classifiers achieve very fast, simple, and efficient breast cancer diagnosis. The training results indicated that LSVM has the lowest accuracy of 95.6107 %, while St-SVM performed better than other methods for all performance indices (accuracy = 97.71 %) and is closely followed by LPSVM (accuracy = 97.3282). However, in the validation phase, the overall accuracies of LPSVM achieved 97.1429 %, which was superior to LSVM (95.4286 %), SSVM (96.5714 %), PSVM (96 %), NSVM (96.5714 %), and St-SVM (94.86 %). Value of ROC and MCC for LPSVM achieved 0.9938 and 0.9369, respectively, which outperformed other classifiers. The results strongly suggest that LPSVM can aid in the diagnosis of breast cancer.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Abonyi J, Szeifert F (2003) Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit Lett 24(14):2195–2207CrossRefMATH Abonyi J, Szeifert F (2003) Supervised fuzzy clustering for the identification of fuzzy classifiers. Pattern Recognit Lett 24(14):2195–2207CrossRefMATH
2.
go back to reference Akay MF (2009) Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst Appl 36(2):3240–3247CrossRef Akay MF (2009) Support vector machines combined with feature selection for breast cancer diagnosis. Expert Syst Appl 36(2):3240–3247CrossRef
3.
go back to reference Bishop C (1997) Neural networks for pattern recognition. Clarendon Press, Oxford Bishop C (1997) Neural networks for pattern recognition. Clarendon Press, Oxford
4.
go back to reference Blanz V, Scholkopf B, Bulthoff H et al (1996) Comparison of view–based object recognition algorithms using realistic 3d models. In: von der Malsburg C, von Seelen W, Vorbruggen JC, Sendhoff B (eds) Artificial Neural Networks—ICANN’96, Springer Lecture Notes in Computer Science, Berlin, vol 1112, pp 251–256 Blanz V, Scholkopf B, Bulthoff H et al (1996) Comparison of view–based object recognition algorithms using realistic 3d models. In: von der Malsburg C, von Seelen W, Vorbruggen JC, Sendhoff B (eds) Artificial Neural Networks—ICANN’96, Springer Lecture Notes in Computer Science, Berlin, vol 1112, pp 251–256
5.
go back to reference Boyle P, Levin B (2008) World Cancer report 2008. International Agency for Research on Cancer, Lyon Boyle P, Levin B (2008) World Cancer report 2008. International Agency for Research on Cancer, Lyon
6.
go back to reference Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167CrossRef Burges CJC (1998) A tutorial on support vector machines for pattern recognition. Data Min Knowl Discov 2(2):121–167CrossRef
7.
go back to reference Burges CJC, Scholkopf B (1997) Improving the accuracy and speed of support vector learning machines. In: Mozer M, Jordan M, Petsche T (eds) Advances in neural information processing systems 9. MIT Press, Cambridge, pp 375–381 Burges CJC, Scholkopf B (1997) Improving the accuracy and speed of support vector learning machines. In: Mozer M, Jordan M, Petsche T (eds) Advances in neural information processing systems 9. MIT Press, Cambridge, pp 375–381
8.
go back to reference Cedeño AM, Domíngueza JQ, Andina D (2011) WBCD breast cancer database classification applying artificial metaplasticity neural network. Expert Syst Appl 38(8):9573–9579CrossRef Cedeño AM, Domíngueza JQ, Andina D (2011) WBCD breast cancer database classification applying artificial metaplasticity neural network. Expert Syst Appl 38(8):9573–9579CrossRef
9.
go back to reference Chang RF, Wu WJ, Moon WK et al (2003) Support vector machines for diagnosis of breast tumors on US images. Acad Radiol 10(2):189–197CrossRef Chang RF, Wu WJ, Moon WK et al (2003) Support vector machines for diagnosis of breast tumors on US images. Acad Radiol 10(2):189–197CrossRef
10.
go back to reference Chen HL, Yanga B, Liua J, Liu DY (2011) A support vector machine classifier with rough set based feature selection for breast cancer diagnosis. Expert Syst Appl 38(7):9014–9022CrossRef Chen HL, Yanga B, Liua J, Liu DY (2011) A support vector machine classifier with rough set based feature selection for breast cancer diagnosis. Expert Syst Appl 38(7):9014–9022CrossRef
11.
12.
go back to reference Cortes C, Vapnik V (1995) Support vector network. Mach Learn 20:273–297MATH Cortes C, Vapnik V (1995) Support vector network. Mach Learn 20:273–297MATH
13.
go back to reference Cristianini N, Taylor JS (2000) An introduction to support Vector Machines: and other kernel-based learning methods. Cambridge University Press, CambridgeCrossRef Cristianini N, Taylor JS (2000) An introduction to support Vector Machines: and other kernel-based learning methods. Cambridge University Press, CambridgeCrossRef
14.
go back to reference Evgeniou T, Pontil M, Poggio T (2000) Regularization networks and support vector machines. In: Bartlett P, Scholkopf B, Schuurmans D, Smola AJ (eds) Advances in large margin classifiers. MIT Press, Cambridge, pp 171–203 Evgeniou T, Pontil M, Poggio T (2000) Regularization networks and support vector machines. In: Bartlett P, Scholkopf B, Schuurmans D, Smola AJ (eds) Advances in large margin classifiers. MIT Press, Cambridge, pp 171–203
15.
go back to reference Fan CY, Changb PC, Linb JJ, Hsieh JC (2011) A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification. Appl Soft Comput 11(1):632–644CrossRef Fan CY, Changb PC, Linb JJ, Hsieh JC (2011) A hybrid model combining case-based reasoning and fuzzy decision tree for medical data classification. Appl Soft Comput 11(1):632–644CrossRef
16.
go back to reference Francois D, Rossi F, Wertz V, Verleysen M (2007) Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 70:1276–1288CrossRef Francois D, Rossi F, Wertz V, Verleysen M (2007) Resampling methods for parameter-free and robust feature selection with mutual information. Neurocomputing 70:1276–1288CrossRef
17.
go back to reference Fung G, Mangasarian OL (2004) A feature selection Newton method for support vector machine classification. Comput Optim Appl 28(2):185–202CrossRefMATHMathSciNet Fung G, Mangasarian OL (2004) A feature selection Newton method for support vector machine classification. Comput Optim Appl 28(2):185–202CrossRefMATHMathSciNet
18.
go back to reference Fung G, Mangasarian OL (2003) Finite {N}ewton method for {L}agrangian support vector machine classification. Neurocomputing 55(1–2):39–55CrossRef Fung G, Mangasarian OL (2003) Finite {N}ewton method for {L}agrangian support vector machine classification. Neurocomputing 55(1–2):39–55CrossRef
19.
go back to reference Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers. Proceedings of KDD’01 seventh ACM SIGKDD international conference on Knowledge Discovery and Data Mining, San Francisco, pp 77–86. ISBN: 1-58113-391-X. doi:10.1145/502512.502527 Fung G, Mangasarian OL (2001) Proximal support vector machine classifiers. Proceedings of KDD’01 seventh ACM SIGKDD international conference on Knowledge Discovery and Data Mining, San Francisco, pp 77–86. ISBN: 1-58113-391-X. doi:10.​1145/​502512.​502527
20.
go back to reference Goodman D, Boggess L, Watkins A (2002) Artificial immune system classification of multiple-class problems. In: Dagli CH, Buczak AL, Ghosh J, Ersoy O, Kercel SW (eds) Intell Eng Syst Artif Neural Net, vol 12, pp 179–184 Goodman D, Boggess L, Watkins A (2002) Artificial immune system classification of multiple-class problems. In: Dagli CH, Buczak AL, Ghosh J, Ersoy O, Kercel SW (eds) Intell Eng Syst Artif Neural Net, vol 12, pp 179–184
21.
go back to reference Gunn SR (1998) Support vector machines for classification and regression. Technical Report, Faculty of Engineering, University of Southampton Gunn SR (1998) Support vector machines for classification and regression. Technical Report, Faculty of Engineering, University of Southampton
22.
go back to reference Hamilton HJ, Shan N, Cerone N (1996) RIAC: a rule induction algorithm based on approximate classification. Technical Report CS 96-06, University of Regina. ISBN 0-7731-0321-X Hamilton HJ, Shan N, Cerone N (1996) RIAC: a rule induction algorithm based on approximate classification. Technical Report CS 96-06, University of Regina. ISBN 0-7731-0321-X
23.
go back to reference Hsu CW, Chang CC, Lin CJ (2003) A practical guide to support vector classification. Technical Report, Department of Computer Science and Information Engineering, National Taiwan University Hsu CW, Chang CC, Lin CJ (2003) A practical guide to support vector classification. Technical Report, Department of Computer Science and Information Engineering, National Taiwan University
24.
go back to reference Huang ML, Hung YH, Chen WY (2010) Neural network classifier with entropy based feature selection on breast cancer diagnosis. J Med Syst 34(5):865–873CrossRef Huang ML, Hung YH, Chen WY (2010) Neural network classifier with entropy based feature selection on breast cancer diagnosis. J Med Syst 34(5):865–873CrossRef
25.
go back to reference Joachims T, Nedellec C, Rouveirol C (1998) Text categorization with support vector machines: learning with many relevant. Springer, Springer-Verlag GmbH, Berlin Joachims T, Nedellec C, Rouveirol C (1998) Text categorization with support vector machines: learning with many relevant. Springer, Springer-Verlag GmbH, Berlin
27.
go back to reference Karabatak M, Ince MC (2009) An expert system for detection of breast cancer based on association rules and neural network. Exp Syst Appl 36(2, Part 2):3465–3469CrossRef Karabatak M, Ince MC (2009) An expert system for detection of breast cancer based on association rules and neural network. Exp Syst Appl 36(2, Part 2):3465–3469CrossRef
28.
go back to reference Kerekes J (2008) Receiver operating characteristic curve confidence intervals and regions. IEEE Geosci Remote Sens Lett 5(2):251–255CrossRef Kerekes J (2008) Receiver operating characteristic curve confidence intervals and regions. IEEE Geosci Remote Sens Lett 5(2):251–255CrossRef
30.
go back to reference Liu HX, Zhang RS, Luan F et al (2003) Diagnosing breast cancer based on support vector machines. J Chem Inf Comput Sci 43(3):900–907CrossRef Liu HX, Zhang RS, Luan F et al (2003) Diagnosing breast cancer based on support vector machines. J Chem Inf Comput Sci 43(3):900–907CrossRef
31.
go back to reference Mangasarian OL, Setiono R, Wolberg WH (1990) Pattern recognition via linear programming: theory and application to medical diagnosis. Proceedings of the workshop on large-scale numerical optimization, SIAM, Philadelphia, pp 22–31 Mangasarian OL, Setiono R, Wolberg WH (1990) Pattern recognition via linear programming: theory and application to medical diagnosis. Proceedings of the workshop on large-scale numerical optimization, SIAM, Philadelphia, pp 22–31
32.
go back to reference Mangasarian OL, Musicant DR (2000) Lagrangian Support Vector Machine Classification. Tec. Report, Data Mining Institute, Computer Sciences Department, University of Wisconsin Mangasarian OL, Musicant DR (2000) Lagrangian Support Vector Machine Classification. Tec. Report, Data Mining Institute, Computer Sciences Department, University of Wisconsin
33.
go back to reference Mangasarian OL, Musicant DR (1999) Successive overrelaxation for support vector machines. IEEE Trans Neural Networks 10:1032–1037CrossRef Mangasarian OL, Musicant DR (1999) Successive overrelaxation for support vector machines. IEEE Trans Neural Networks 10:1032–1037CrossRef
34.
go back to reference Mangasarian OL (2000) Generalized support vector machines. In: Smola A, Bartlett P, Scholkopf B, Schuurmans D (eds) Advances in large margin classifiers. MIT Press, Cambridge, pp 135–146 Mangasarian OL (2000) Generalized support vector machines. In: Smola A, Bartlett P, Scholkopf B, Schuurmans D (eds) Advances in large margin classifiers. MIT Press, Cambridge, pp 135–146
35.
go back to reference McAree B, O’Donnell ME, Spence A et al (2010) Breast cancer in women under 40 years of age: a series of 57 cases from Northern Ireland. Breast 19(2):97–104CrossRef McAree B, O’Donnell ME, Spence A et al (2010) Breast cancer in women under 40 years of age: a series of 57 cases from Northern Ireland. Breast 19(2):97–104CrossRef
36.
go back to reference Mitchell T (1997) Machine learning. The McGraw-Hill Companies, Inc., New YorkMATH Mitchell T (1997) Machine learning. The McGraw-Hill Companies, Inc., New YorkMATH
37.
go back to reference Nauck D, Kruse R (1999) Obtaining interpretable fuzzy classification rules from medical data. Artif Intell Med 16(2):149–169CrossRefMathSciNet Nauck D, Kruse R (1999) Obtaining interpretable fuzzy classification rules from medical data. Artif Intell Med 16(2):149–169CrossRefMathSciNet
39.
go back to reference Osuna E, Freund R, Girosit F (1997) Training support vector machines: an application to face detection. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun 17–19, pp 130–136 Osuna E, Freund R, Girosit F (1997) Training support vector machines: an application to face detection. Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Jun 17–19, pp 130–136
40.
go back to reference Park SH, Goo JM, Jo CH (2004) Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J Radiol 5(1):11–18CrossRef Park SH, Goo JM, Jo CH (2004) Receiver operating characteristic (ROC) curve: practical review for radiologists. Korean J Radiol 5(1):11–18CrossRef
41.
go back to reference Pena-Reyes CA, Sipper M (1999) A fuzzy-genetic approach to breast cancer diagnosis. Artif Intell Med 17(2):131–155CrossRef Pena-Reyes CA, Sipper M (1999) A fuzzy-genetic approach to breast cancer diagnosis. Artif Intell Med 17(2):131–155CrossRef
42.
go back to reference Polat K, Gunes S (2007) Breast cancer diagnosis using least square support vector machine. Digit Signal Process 17(4):694–701CrossRef Polat K, Gunes S (2007) Breast cancer diagnosis using least square support vector machine. Digit Signal Process 17(4):694–701CrossRef
43.
go back to reference Platt J (1998) Sequential minimal optimization: A fast algorithm for training support vector machines. Technical Report MSR-TR-98-14 Platt J (1998) Sequential minimal optimization: A fast algorithm for training support vector machines. Technical Report MSR-TR-98-14
44.
go back to reference Quinlan J (1996) Improved use of continuous attributes in C4. 5. J Artif Intell Res 4:77–90MATH Quinlan J (1996) Improved use of continuous attributes in C4. 5. J Artif Intell Res 4:77–90MATH
45.
go back to reference Sahan S, Polat K, Kodaz H, Günes S (2007) A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis. Comput Biol Med 37(3):415–423CrossRef Sahan S, Polat K, Kodaz H, Günes S (2007) A new hybrid method based on fuzzy-artificial immune system and k-nn algorithm for breast cancer diagnosis. Comput Biol Med 37(3):415–423CrossRef
46.
go back to reference Schmidt M (1996) Identifying speaker with support vector networks. Interface’96 Proceedings, Sydney Schmidt M (1996) Identifying speaker with support vector networks. Interface’96 Proceedings, Sydney
47.
go back to reference Scholkopf B, Burges C, Vapnik V (1995) Extracting support data for a given task. In: Fayyad UM, Uthurusamy R (eds) Proceedings, first international conference on knowledge discovery & data mining. AAAI Press, Menlo Park Scholkopf B, Burges C, Vapnik V (1995) Extracting support data for a given task. In: Fayyad UM, Uthurusamy R (eds) Proceedings, first international conference on knowledge discovery & data mining. AAAI Press, Menlo Park
48.
go back to reference Scholkopf B, Burges C, Vapnik V (1996) Incorporating invariances in support vector learning machines. In: von der Malsburg C, von Seelen W, Vorbruggen JC, Sendhoff B (eds) Artificial neural networks- ICANN’96, vol 1112. Springer Lecture Notes in Computer Science, Berlin, pp 47–52 Scholkopf B, Burges C, Vapnik V (1996) Incorporating invariances in support vector learning machines. In: von der Malsburg C, von Seelen W, Vorbruggen JC, Sendhoff B (eds) Artificial neural networks- ICANN’96, vol 1112. Springer Lecture Notes in Computer Science, Berlin, pp 47–52
49.
go back to reference Setiono R (2000) Generating concise and accurate classification rules for breast cancer diagnosis. Artif Intell Med 18(3):205–219CrossRef Setiono R (2000) Generating concise and accurate classification rules for breast cancer diagnosis. Artif Intell Med 18(3):205–219CrossRef
51.
go back to reference Ster B, Dobnikar A (1996) Neural networks in medical diagnosis: comparison with other methods. Proceedings of the international conference on engineering applications of neural networks, pp 427–430 Ster B, Dobnikar A (1996) Neural networks in medical diagnosis: comparison with other methods. Proceedings of the international conference on engineering applications of neural networks, pp 427–430
52.
go back to reference Taylor JS, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, CambridgeCrossRef Taylor JS, Cristianini N (2004) Kernel methods for pattern analysis. Cambridge University Press, CambridgeCrossRef
53.
go back to reference Übeyli ED (2005) A mixture of experts network structure for breast cancer diagnosis. J Med Syst 29(5):569–579CrossRef Übeyli ED (2005) A mixture of experts network structure for breast cancer diagnosis. J Med Syst 29(5):569–579CrossRef
54.
go back to reference Übeyli ED (2009) Adaptive neuro-fuzzy inference systems for automatic detection of breast cancer. J Med Syst 33(5):353–358CrossRef Übeyli ED (2009) Adaptive neuro-fuzzy inference systems for automatic detection of breast cancer. J Med Syst 33(5):353–358CrossRef
55.
go back to reference Ubeyli ED (2007) Implementing automated diagnostic systems for breast cancer detection. Expert Syst Appl 33(4):1054–1062CrossRef Ubeyli ED (2007) Implementing automated diagnostic systems for breast cancer detection. Expert Syst Appl 33(4):1054–1062CrossRef
58.
go back to reference Vapnik VN (1999) The nature of statistical learning theory, 2nd edn. New York, Springer Vapnik VN (1999) The nature of statistical learning theory, 2nd edn. New York, Springer
59.
go back to reference Vapnik V, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. In: Mozer M, Jordan M, Petsche T (eds) Advances in neural information processing systems 9. Cambridge, MIT Press, pp 281–287 Vapnik V, Golowich S, Smola A (1997) Support vector method for function approximation, regression estimation, and signal processing. In: Mozer M, Jordan M, Petsche T (eds) Advances in neural information processing systems 9. Cambridge, MIT Press, pp 281–287
60.
go back to reference Wolberg WH, Mangasarian OL (1990) Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proc Natl Acad Sci 87:9193–9196CrossRefMATH Wolberg WH, Mangasarian OL (1990) Multisurface method of pattern separation for medical diagnosis applied to breast cytology. Proc Natl Acad Sci 87:9193–9196CrossRefMATH
61.
go back to reference Yuan Q, Cai C, Xiao H et al (2007) Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches. Commun Comput Inform Sci 2:1250–1260CrossRef Yuan Q, Cai C, Xiao H et al (2007) Diagnosis of breast tumours and evaluation of prognostic risk by using machine learning approaches. Commun Comput Inform Sci 2:1250–1260CrossRef
Metadata
Title
Performance analysis of support vector machines classifiers in breast cancer mammography recognition
Authors
Ahmad Taher Azar
Shaimaa Ahmed El-Said
Publication date
01-04-2014
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 5/2014
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-012-1324-4

Other articles of this Issue 5/2014

Neural Computing and Applications 5/2014 Go to the issue

Premium Partner