Skip to main content
Top
Published in: Neural Computing and Applications 10/2019

05-05-2018 | Original Article

Performance analysis of various machine learning-based approaches for detection and classification of lung cancer in humans

Authors: Gur Amrit Pal Singh, P. K. Gupta

Published in: Neural Computing and Applications | Issue 10/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Lung cancer is one of the most common causes of death among all cancer-related diseases (Cancer Research UK in Cancer mortality for common cancers. http://​www.​cancerresearchuk​.​org/​health-professional/​cancer-statistics/​mortality/​common-cancers-compared, 2017). It is primarily diagnosed by performing a scan analysis of the patient’s lung. This scan analysis could be of X-ray, CT scan, or MRI. Automated classification of lung cancer is one of the difficult tasks, attributing to the varying mechanisms used for imaging patient’s lungs. Image processing and machine learning approaches have shown a great potential for detection and classification of lung cancer. In this paper, we have demonstrated effective approach for detection and classification of lung cancer-related CT scan images into benign and malignant category. Proposed approach firstly processes these images using image processing techniques, and then further supervised learning algorithms are used for their classification. Here, we have extracted texture features along with statistical features and supplied various extracted features to classifiers. We have used seven different classifiers known as k-nearest neighbors classifier, support vector machine classifier, decision tree classifier, multinomial naive Bayes classifier, stochastic gradient descent classifier, random forest classifier, and multi-layer perceptron (MLP) classifier. We have used dataset of 15750 clinical images consisting of both 6910 benign and 8840 malignant lung cancer related images to train and test these classifiers. In the obtained results, it is found that accuracy of MLP classifier is higher with value of 88.55% in comparison with the other classifiers.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Dimililer K, Ugur B, Ever YK (2017) Tumor detection on CT lung images using image enhancement. Online J Sci Technol 7(1):133–138 Dimililer K, Ugur B, Ever YK (2017) Tumor detection on CT lung images using image enhancement. Online J Sci Technol 7(1):133–138
3.
go back to reference Al-tarawneh MS (2012) Lung cancer detection using image processing techniques. Leonardo Electron J Pract Technol 20:147–58 Al-tarawneh MS (2012) Lung cancer detection using image processing techniques. Leonardo Electron J Pract Technol 20:147–58
5.
go back to reference Gonzalez RC, Woods RE (2002) Digital image processing. Prentice Hall, Upper Saddle River, NJ, pp 797–800 Gonzalez RC, Woods RE (2002) Digital image processing. Prentice Hall, Upper Saddle River, NJ, pp 797–800
6.
go back to reference Dwivedi MS, Borse MR, Yametkar MA (2014) Lung cancer detection and classification by using machine learning and multinomial Bayesian. IOSR J Electron Commun Eng (IOSR-JECE) 9(1):69–75CrossRef Dwivedi MS, Borse MR, Yametkar MA (2014) Lung cancer detection and classification by using machine learning and multinomial Bayesian. IOSR J Electron Commun Eng (IOSR-JECE) 9(1):69–75CrossRef
7.
go back to reference Sun W, Zheng B, Lure F, Wu T, Zhang J, Wang BY, Saltzstein EC, Qian W (2014) Prediction of near-term risk of developing breast cancer using computerized features from bilateral mammograms. Comput Med Imaging Graph 38(5):348–357CrossRef Sun W, Zheng B, Lure F, Wu T, Zhang J, Wang BY, Saltzstein EC, Qian W (2014) Prediction of near-term risk of developing breast cancer using computerized features from bilateral mammograms. Comput Med Imaging Graph 38(5):348–357CrossRef
8.
go back to reference Chaudhary A, Singh SS (2012) Lung cancer detection on CT images by using image processing. In: Proceedings of 2012 IEEE international conference on computing sciences (ICCS). pp 142–146 Chaudhary A, Singh SS (2012) Lung cancer detection on CT images by using image processing. In: Proceedings of 2012 IEEE international conference on computing sciences (ICCS). pp 142–146
9.
go back to reference Pratap GP, Chauhan RP (2016) Detection of Lung cancer cells using image processing techniques. In: Proceedings of IEEE international conference on power electronics, intelligent control and energy systems (ICPEICES). pp. 1–6 Pratap GP, Chauhan RP (2016) Detection of Lung cancer cells using image processing techniques. In: Proceedings of IEEE international conference on power electronics, intelligent control and energy systems (ICPEICES). pp. 1–6
10.
go back to reference Bhusri S, Jain S, Virmani J (2016) Classification of breast lesions based on laws’ feature extraction techniques. In: Proceedings of 3rd international conference on computing for sustainable global development (INDIACom). pp. 1700–1704 Bhusri S, Jain S, Virmani J (2016) Classification of breast lesions based on laws’ feature extraction techniques. In: Proceedings of 3rd international conference on computing for sustainable global development (INDIACom). pp. 1700–1704
11.
go back to reference Kuruvilla J, Gunavathi K (2014) Lung cancer classification using neural networks for CT images. Comput Methods Programs Biomed 113(1):202–209CrossRef Kuruvilla J, Gunavathi K (2014) Lung cancer classification using neural networks for CT images. Comput Methods Programs Biomed 113(1):202–209CrossRef
12.
go back to reference Mitra S, Pal SK (1995) Fuzzy multi-layer perceptron, inferencing and rule generation. IEEE Trans Neural Netw 6(1):51–63CrossRef Mitra S, Pal SK (1995) Fuzzy multi-layer perceptron, inferencing and rule generation. IEEE Trans Neural Netw 6(1):51–63CrossRef
13.
go back to reference Amato F, Lpez A, Pea-Mndez EM, Vahara P, Hampl A, Havel J (2013) Artificial neural networks in medical diagnosis. J Appl Biomed 11:47–58CrossRef Amato F, Lpez A, Pea-Mndez EM, Vahara P, Hampl A, Havel J (2013) Artificial neural networks in medical diagnosis. J Appl Biomed 11:47–58CrossRef
14.
go back to reference Karabatak M, Ince MC (2009) An expert system for detection of breast cancer based on association rules and neural network. Expert Syst Appl 36(2):3465–3469CrossRef Karabatak M, Ince MC (2009) An expert system for detection of breast cancer based on association rules and neural network. Expert Syst Appl 36(2):3465–3469CrossRef
15.
go back to reference Adi K, Widodo CE, Widodo AP, Gernowo R, Pamungkas A, Syifa RA (2017) Nave Bayes algorithm for lung cancer diagnosis using image processing techniques. Adv Sci Lett 23(3):2296–2298CrossRef Adi K, Widodo CE, Widodo AP, Gernowo R, Pamungkas A, Syifa RA (2017) Nave Bayes algorithm for lung cancer diagnosis using image processing techniques. Adv Sci Lett 23(3):2296–2298CrossRef
16.
go back to reference Joachims T (1998) Making large-scale SVM learning practical (No. 1998, 28). In: Technical Report, SFB 475: Komplexittsreduktion in Multivariaten Datenstrukturen, Universitt Dortmund, pp 1–18 Joachims T (1998) Making large-scale SVM learning practical (No. 1998, 28). In: Technical Report, SFB 475: Komplexittsreduktion in Multivariaten Datenstrukturen, Universitt Dortmund, pp 1–18
17.
go back to reference Tidke SP, Chakkarwar VA (2012) Classification of lung tumor using sVM. Int J Comput Eng Res 2(5):1254–1257 Tidke SP, Chakkarwar VA (2012) Classification of lung tumor using sVM. Int J Comput Eng Res 2(5):1254–1257
18.
go back to reference Touw WG, Bayjanov JR, Overmars L, Backus L, Boekhorst J, Wels M, van Hijum SA (2012) Data mining in the life sciences with random forest: A walk in the park or lost in the jungle? Brief. Bioinform. 14(3):315–326CrossRef Touw WG, Bayjanov JR, Overmars L, Backus L, Boekhorst J, Wels M, van Hijum SA (2012) Data mining in the life sciences with random forest: A walk in the park or lost in the jungle? Brief. Bioinform. 14(3):315–326CrossRef
19.
go back to reference Shi T, Seligson D, Belldegrun AS, Palotie A, Horvath S (2005) Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma. Mod Pathol 18(4):547–557CrossRef Shi T, Seligson D, Belldegrun AS, Palotie A, Horvath S (2005) Tumor classification by tissue microarray profiling: random forest clustering applied to renal cell carcinoma. Mod Pathol 18(4):547–557CrossRef
20.
go back to reference Ramos-Gonzlez J, Lpez-Snchez D, Castellanos-Garzn JA, de Paz JF, Corchado JM (2017) A CBR framework with gradient boosting based feature selection for lung cancer subtype classification. Comput Biol Med 86:98–106CrossRef Ramos-Gonzlez J, Lpez-Snchez D, Castellanos-Garzn JA, de Paz JF, Corchado JM (2017) A CBR framework with gradient boosting based feature selection for lung cancer subtype classification. Comput Biol Med 86:98–106CrossRef
21.
go back to reference Sakamoto M, Nakano H, Zhao K, Sekiyama T (2017) Multi-stage neural networks with single-sided classifiers for false positive reduction and its evaluation using Lung X-ray CT images. ArXiv preprint arXiv:1703.00311, pp 1–11 Sakamoto M, Nakano H, Zhao K, Sekiyama T (2017) Multi-stage neural networks with single-sided classifiers for false positive reduction and its evaluation using Lung X-ray CT images. ArXiv preprint arXiv:​1703.​00311, pp 1–11
22.
go back to reference Demyanov S, Chakravorty R, Abedini M, Halpern A, Garnavi R (2016) Classification of dermoscopy patterns using deep convolutional neural networks. In: Proceedings of 13th international symposium on biomedical imaging (ISBI). pp 364–368 Demyanov S, Chakravorty R, Abedini M, Halpern A, Garnavi R (2016) Classification of dermoscopy patterns using deep convolutional neural networks. In: Proceedings of 13th international symposium on biomedical imaging (ISBI). pp 364–368
23.
go back to reference Lopez AR, Giro-i-Nieto X, Burdick J, Marques O (2017) Skin lesion classification from dermoscopic images using deep learning techniques. In: Proceedings of 13th IASTED international conference on biomedical engineering (BioMed). pp 49–54 Lopez AR, Giro-i-Nieto X, Burdick J, Marques O (2017) Skin lesion classification from dermoscopic images using deep learning techniques. In: Proceedings of 13th IASTED international conference on biomedical engineering (BioMed). pp 49–54
24.
go back to reference Bewal R, Ghosh A, Chaudhary A (2015) Detection of breast cancer using neural networks a review. J Clin Biomed Sci 5(4):143–148 Bewal R, Ghosh A, Chaudhary A (2015) Detection of breast cancer using neural networks a review. J Clin Biomed Sci 5(4):143–148
25.
go back to reference Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med image Anal 35:18–31CrossRef Havaei M, Davy A, Warde-Farley D, Biard A, Courville A, Bengio Y, Pal C, Jodoin PM, Larochelle H (2017) Brain tumor segmentation with deep neural networks. Med image Anal 35:18–31CrossRef
26.
go back to reference Weng S, Xu X, Li J, Wong ST (2017) Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer. J Biomed Opt 22(10):106017CrossRef Weng S, Xu X, Li J, Wong ST (2017) Combining deep learning and coherent anti-Stokes Raman scattering imaging for automated differential diagnosis of lung cancer. J Biomed Opt 22(10):106017CrossRef
27.
go back to reference Sun W, Zheng B, Qian W (2017) Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis. Comput Biol Med 89:530–539CrossRef Sun W, Zheng B, Qian W (2017) Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis. Comput Biol Med 89:530–539CrossRef
28.
go back to reference Mahbod A, Ecker R, Ellinger I (2017) Skin lesion classification using hybrid deep neural networks. arXiv preprint arXiv:1702.08434, pp 1–5 Mahbod A, Ecker R, Ellinger I (2017) Skin lesion classification using hybrid deep neural networks. arXiv preprint arXiv:​1702.​08434, pp 1–5
29.
go back to reference Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRef Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S (2017) Dermatologist-level classification of skin cancer with deep neural networks. Nature 542(7639):115–118CrossRef
30.
go back to reference Behrmann J, Etmann C, Boskamp T, Casadonte R, Kriegsmann J, Maass P (2017) Deep learning for tumor classification in imaging mass spectrometry. Bioinformatics 1:1–10 Behrmann J, Etmann C, Boskamp T, Casadonte R, Kriegsmann J, Maass P (2017) Deep learning for tumor classification in imaging mass spectrometry. Bioinformatics 1:1–10
Metadata
Title
Performance analysis of various machine learning-based approaches for detection and classification of lung cancer in humans
Authors
Gur Amrit Pal Singh
P. K. Gupta
Publication date
05-05-2018
Publisher
Springer London
Published in
Neural Computing and Applications / Issue 10/2019
Print ISSN: 0941-0643
Electronic ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-018-3518-x

Other articles of this Issue 10/2019

Neural Computing and Applications 10/2019 Go to the issue

Premium Partner