Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 6/2019

13-02-2019

Performance assessment of Pr1−xSrxCo0.8Cu0.2O3−δ perovskite oxides as cathode material for solid oxide fuel cells with Ce0.8Sm0.2O1.9 electrolyte

Authors: Sanlong Wang, Xiangwei Meng, Jinghai Yang, Lili Yang, Lizhong Wang, Mingxing Song, Yiming Zhou, Shiquan Lü

Published in: Journal of Materials Science: Materials in Electronics | Issue 6/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In this paper, Pr1−xSrxCo0.8Cu0.2O3−δ (x = 0.2, 0.3, 0.4, 0.5, 0.6) cathode material is investigated for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Pr1−xSrxCo0.8Cu0.2O3−δ oxides are prepared by the EDTA-citrate complexing method. XRD results show that there is a structural change from orthorhombic (x = 0.2 and 0.3) to cubic (x = 0.4, 0.5 and 0.6) in Pr1−xSrxCo0.8Cu0.2O3−δ system. The electrical conductivities of all the samples are all higher than 523 S cm−1 between 500 and 800 °C. The semiconductor-to-metal conductivity transition takes place at around x = 0.4. In order to further reduce thermal expansion coefficients (TECs) and improve electrochemical performance of the Pr1−xSrxCo0.8Cu0.2O3−δ cathode, we fabricate Pr0.5Sr0.5Co0.8Cu0.2O3−δ–x wt% Ce0.8Sm0.2O1.9 (PSCC–xSDC, x = 20–60) composite cathodes. In PSCC–xSDC electrode, the TEC and polarization resistance (Rp) both decrease with the addition of SDC. The PSCC–50SDC composite cathode has the lowest Rp. The lowest Rp 0.029 Ω cm2 is obtained at 800 °C for PSCC–50SDC electrode. Subsequently, we fabricate SDC (300 µm thick) electrolyte-supported fuel cell with PSCC–50SDC cathodes. The maximum power densities is 428 mW cm−2 at 800 °C. The present results demonstrate that PSCC–50SDC composite is a promising candidate cathode for IT-SOFCs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference N.Q. Minh, Solid oxide fuel cell technology-features and applications. Solid State Ionics. 174, 271–277 (2004)CrossRef N.Q. Minh, Solid oxide fuel cell technology-features and applications. Solid State Ionics. 174, 271–277 (2004)CrossRef
2.
go back to reference D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568–1578 (2008)CrossRef D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568–1578 (2008)CrossRef
3.
go back to reference N.P. Brandon, S. Skinner, B.C.H. Steele, Recent advances in materials for fuel cells. Annu. Rev. Mater. Res. 33, 183–213 (2003)CrossRef N.P. Brandon, S. Skinner, B.C.H. Steele, Recent advances in materials for fuel cells. Annu. Rev. Mater. Res. 33, 183–213 (2003)CrossRef
4.
go back to reference R. Li, G. Chen, K. Wu, Y.H. Cheng, La0.8Sr1.2CoO4 + δ-CGO composite as cathode on La0.9Sr0.1Ga0.8Mg0.2O3–δ electrolyte for intermediate temperature solid oxide fuel cells. J. Power Sourc. 232, 332–337 (2013)CrossRef R. Li, G. Chen, K. Wu, Y.H. Cheng, La0.8Sr1.2CoO4 + δ-CGO composite as cathode on La0.9Sr0.1Ga0.8Mg0.2O3–δ electrolyte for intermediate temperature solid oxide fuel cells. J. Power Sourc. 232, 332–337 (2013)CrossRef
5.
go back to reference R. Li, D. Wang, L. Ge, S. He, H. Chen, L. Guo, Effect of Bi2O3 on the electrochemical performance of LaBaCo2O5 + δ cathode for intermediate-temperature solid oxide fuel cells. Ceram. Int. 40, 2599–2603 (2014)CrossRef R. Li, D. Wang, L. Ge, S. He, H. Chen, L. Guo, Effect of Bi2O3 on the electrochemical performance of LaBaCo2O5 + δ cathode for intermediate-temperature solid oxide fuel cells. Ceram. Int. 40, 2599–2603 (2014)CrossRef
6.
go back to reference E. Koep, D.S. Mebane, R. Das, C. Compson, M. Liu, Electrochem. Solid-State Lett. 8, A592–A595 (2005)CrossRef E. Koep, D.S. Mebane, R. Das, C. Compson, M. Liu, Electrochem. Solid-State Lett. 8, A592–A595 (2005)CrossRef
7.
go back to reference M.J. Jørgensen, S. Primdahl, C. Bagger, M. Mogensen, Effect of sintering temperature on microstructure and performance of LSM–YSZ composite cathodes. Solid State Ionics 139, 1–11 (2001)CrossRef M.J. Jørgensen, S. Primdahl, C. Bagger, M. Mogensen, Effect of sintering temperature on microstructure and performance of LSM–YSZ composite cathodes. Solid State Ionics 139, 1–11 (2001)CrossRef
8.
go back to reference S.B. Adler, J.A. Lane, B.C.H. Steele, Electrode kinetics of porous mixed-conducting oxygen electrodes. J. Electrochem. Soc. 143, 3554–3564 (1996)CrossRef S.B. Adler, J.A. Lane, B.C.H. Steele, Electrode kinetics of porous mixed-conducting oxygen electrodes. J. Electrochem. Soc. 143, 3554–3564 (1996)CrossRef
9.
go back to reference H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, K. Yamada Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode. Solid State Ionics 132, 279–285 (2000)CrossRef H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, K. Yamada Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode. Solid State Ionics 132, 279–285 (2000)CrossRef
10.
go back to reference Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid oxide fuel cells. Nature 431, 170–173 (2004)CrossRef Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid oxide fuel cells. Nature 431, 170–173 (2004)CrossRef
11.
go back to reference K. Yasumoto, Y. Inagaki, M. Shiono, M. Dokiya, An (La,Sr)(Co,Cu)O3–δ cathode for reduced temperature SOFCs. Solid State Ionics 148, 545–549 (2002)CrossRef K. Yasumoto, Y. Inagaki, M. Shiono, M. Dokiya, An (La,Sr)(Co,Cu)O3–δ cathode for reduced temperature SOFCs. Solid State Ionics 148, 545–549 (2002)CrossRef
12.
go back to reference T. Ishihara, T. Kudo, H. Matsuda, Y. Takita, Doped PrMnO3 perovskite oxide as a new cathode of solid oxide fuel cells for low temperature operation. J. Electrochem. Soc. 142, 1519–1524 (1995)CrossRef T. Ishihara, T. Kudo, H. Matsuda, Y. Takita, Doped PrMnO3 perovskite oxide as a new cathode of solid oxide fuel cells for low temperature operation. J. Electrochem. Soc. 142, 1519–1524 (1995)CrossRef
13.
go back to reference L. Cong, T. He, Y. Ji, P. Guan, Y. Huang, W. Su, Synthesis and characterization of IT-electrolyte with perovskite structure La0.8Sr0.2Ga0.85Mg0.15O3–δ by glycine–nitrate combustion method. J. Alloys Compd. 348, 325–331 (2003)CrossRef L. Cong, T. He, Y. Ji, P. Guan, Y. Huang, W. Su, Synthesis and characterization of IT-electrolyte with perovskite structure La0.8Sr0.2Ga0.85Mg0.15O3–δ by glycine–nitrate combustion method. J. Alloys Compd. 348, 325–331 (2003)CrossRef
14.
go back to reference H.C. Yu, K.Z. Fung, Electrode properties of La1–xSrxCuO2.5–δ as new cathode materials for intermediate-temperature SOFCs. J. Power Sources 133, 162–168 (2004)CrossRef H.C. Yu, K.Z. Fung, Electrode properties of La1–xSrxCuO2.5–δ as new cathode materials for intermediate-temperature SOFCs. J. Power Sources 133, 162–168 (2004)CrossRef
15.
go back to reference K. Vidal, L.M. Rodríguez-Martínez, L. Ortega-San-Martín, E. Díez-Linaza, M.L. Nó, T. Rojo, A. Laresgoiti, M.I. Arriortua, Isolating the effect of doping in the structure and conductivity of (Ln1–xMx)FeO3–δ perovskites. Solid State Ionics 178, 1310–1316 (2007)CrossRef K. Vidal, L.M. Rodríguez-Martínez, L. Ortega-San-Martín, E. Díez-Linaza, M.L. Nó, T. Rojo, A. Laresgoiti, M.I. Arriortua, Isolating the effect of doping in the structure and conductivity of (Ln1–xMx)FeO3–δ perovskites. Solid State Ionics 178, 1310–1316 (2007)CrossRef
16.
go back to reference L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Structure and electrical properties of La1–xSrxCo1–yFeyO3. Part 2. The system La1–xSrxCo0.2Fe0.8–O3. Solid State Ionics 76, 273–283 (1995)CrossRef L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Structure and electrical properties of La1–xSrxCo1–yFeyO3. Part 2. The system La1–xSrxCo0.2Fe0.8–O3. Solid State Ionics 76, 273–283 (1995)CrossRef
17.
go back to reference F.J. Jin, Y. Shen, R. Wang, T.M. He, Double-perovskite PrBaCo2/3Fe2/3Cu2/3O5 + δ as cathode material for intermediate temperature solid-oxide fuel cells. J. Power Sourc. 234, 244–251 (2013)CrossRef F.J. Jin, Y. Shen, R. Wang, T.M. He, Double-perovskite PrBaCo2/3Fe2/3Cu2/3O5 + δ as cathode material for intermediate temperature solid-oxide fuel cells. J. Power Sourc. 234, 244–251 (2013)CrossRef
18.
go back to reference G.Z. Xing, J.B. Yi, J.G. Tao, T. Liu, L.M. Wong, Z. Zhang, G.P. Li, S.J. Wang, J. Ding, T.C. Sum, C.H.A. Huan, T. Wu, Comparative study of room-temperature ferromagnetism in Cu-Doped ZnO nanowires enhanced by structural inhomogeneity. Adv. Mater. 20, 3521–3527 (2008)CrossRef G.Z. Xing, J.B. Yi, J.G. Tao, T. Liu, L.M. Wong, Z. Zhang, G.P. Li, S.J. Wang, J. Ding, T.C. Sum, C.H.A. Huan, T. Wu, Comparative study of room-temperature ferromagnetism in Cu-Doped ZnO nanowires enhanced by structural inhomogeneity. Adv. Mater. 20, 3521–3527 (2008)CrossRef
19.
go back to reference G.Z. Xing, J.B. Yi, D.D. Wang, L. Liao, T. Yu, Z.X. Shen, C.H.A. Huan, T.C. Sum, J. Ding, T. Wu, Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3–δ nanostructures. Physical Review B 79, 174406 (2009)CrossRef G.Z. Xing, J.B. Yi, D.D. Wang, L. Liao, T. Yu, Z.X. Shen, C.H.A. Huan, T.C. Sum, J. Ding, T. Wu, Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3–δ nanostructures. Physical Review B 79, 174406 (2009)CrossRef
20.
go back to reference H.W. Brinks, H. Fjellvåg, A. Kjekshus, B.C. Hauback, Structure and magnetism of Pr1–xSrxFeO3–δ. J. Solid State Chem. 150, 149–233 (2000)CrossRef H.W. Brinks, H. Fjellvåg, A. Kjekshus, B.C. Hauback, Structure and magnetism of Pr1–xSrxFeO3–δ. J. Solid State Chem. 150, 149–233 (2000)CrossRef
21.
go back to reference J. Piao, K. Sun, N. Zhang, X. Chen, S. Xu, D. Zhou, Preparation and characterization of Pr1–xSrxFeO3 cathode material for intermediate temperature solid oxide fuel cells. J. Power Sourc. 172, 633–640 (2007)CrossRef J. Piao, K. Sun, N. Zhang, X. Chen, S. Xu, D. Zhou, Preparation and characterization of Pr1–xSrxFeO3 cathode material for intermediate temperature solid oxide fuel cells. J. Power Sourc. 172, 633–640 (2007)CrossRef
22.
go back to reference E. Boehm, J.M. Bassat, M.C. Steil, P. Dordor, F. Mauvy, J.C. Grenier, Oxygen transport properties of La2Ni1–xCuxO4+δ mixed conducting oxides. Solid State Sci. 5, 973–981 (2003)CrossRef E. Boehm, J.M. Bassat, M.C. Steil, P. Dordor, F. Mauvy, J.C. Grenier, Oxygen transport properties of La2Ni1–xCuxO4+δ mixed conducting oxides. Solid State Sci. 5, 973–981 (2003)CrossRef
23.
go back to reference H. Lv, Y. Wu, B. Huang, B. Zhao, K. Hu, Structure and electrochemical properties of Sm0.5Sr0.5Co1–xFexO3–δ cathodes for solid oxide fuel cells. Solid State Ionics 177, 901–906 (2006)CrossRef H. Lv, Y. Wu, B. Huang, B. Zhao, K. Hu, Structure and electrochemical properties of Sm0.5Sr0.5Co1–xFexO3–δ cathodes for solid oxide fuel cells. Solid State Ionics 177, 901–906 (2006)CrossRef
24.
go back to reference H. Takahashi, F. Munakata, M. Yamanaka, Ab initio study of the electronic structures in LaCoO3–SrCoO3 systems. Phys. Rev. B 57, 15211 (1998)CrossRef H. Takahashi, F. Munakata, M. Yamanaka, Ab initio study of the electronic structures in LaCoO3–SrCoO3 systems. Phys. Rev. B 57, 15211 (1998)CrossRef
25.
go back to reference K.T. Lee, A. Manthiram, LaSr3Fe3–yCoyO10–δ (0 ≤ y ≤ 1.5) intergrowth oxide cathodes for intermediate temperature solid oxide fuel cells. Chem. Mater. 18, 1621–1626 (2006)CrossRef K.T. Lee, A. Manthiram, LaSr3Fe3–yCoyO10–δ (0 ≤ y ≤ 1.5) intergrowth oxide cathodes for intermediate temperature solid oxide fuel cells. Chem. Mater. 18, 1621–1626 (2006)CrossRef
26.
go back to reference M. Karmele Vidal, L. Rodríguez-Martínez, L. Ortega-San-Martín, E. Díez-Linaza, M. Luisa Nó, T. Rojo, A. Laresgoiti, M. Isabel Arriortua, Isolating the effect of doping in the structure and conductivity of (Ln1–xMx)FeO3–δ perovskites. Solid State Ionics 178, 1310–1316 (2007)CrossRef M. Karmele Vidal, L. Rodríguez-Martínez, L. Ortega-San-Martín, E. Díez-Linaza, M. Luisa Nó, T. Rojo, A. Laresgoiti, M. Isabel Arriortua, Isolating the effect of doping in the structure and conductivity of (Ln1–xMx)FeO3–δ perovskites. Solid State Ionics 178, 1310–1316 (2007)CrossRef
27.
go back to reference T.Z. Jiang, Z.H. Wang, B.Y. Ren, J.S. Qiao, W. Sun, K.N. Sun, Compositionally continuously graded cathode layers of (Ba0.5Sr0.5)(Fe0.91Al0.09)O3–δ–Gd0.1Ce0.9O2 by wet powder spraying technique for solid oxide fuel cells. J. Power Sources 247, 858–864 (2014)CrossRef T.Z. Jiang, Z.H. Wang, B.Y. Ren, J.S. Qiao, W. Sun, K.N. Sun, Compositionally continuously graded cathode layers of (Ba0.5Sr0.5)(Fe0.91Al0.09)O3–δ–Gd0.1Ce0.9O2 by wet powder spraying technique for solid oxide fuel cells. J. Power Sources 247, 858–864 (2014)CrossRef
28.
go back to reference G.Z. Xing, Y. Wang, J.I. Wong, Y.M. Shi, Z.X. Huang, S. Li, H.Y. Yang, Hybrid CuO/SnO2 nanocomposites: towards cost-effective and high performance binder free lithium ion batteries anode materials. Appl. Phys. Lett. 105, 143905 (2014)CrossRef G.Z. Xing, Y. Wang, J.I. Wong, Y.M. Shi, Z.X. Huang, S. Li, H.Y. Yang, Hybrid CuO/SnO2 nanocomposites: towards cost-effective and high performance binder free lithium ion batteries anode materials. Appl. Phys. Lett. 105, 143905 (2014)CrossRef
29.
go back to reference S.B. Adler, Limitations of charge-transfer models for mixed-conducting oxygen electrodes. Solid State Ionics 135, 603–612 (2000)CrossRef S.B. Adler, Limitations of charge-transfer models for mixed-conducting oxygen electrodes. Solid State Ionics 135, 603–612 (2000)CrossRef
30.
go back to reference S.Y. Li, Z. Lü, B. Wei, X.Q. Huang, J.P. Miao, Z.G. Liu Performances of Ba0.5Sr0.5Co0.6Fe0.4O3–δ–Ce0.8Sm0.2O1.9 composite cathode materials for IT-SOFC. J. Alloys Compd. 448, 116–121 (2008)CrossRef S.Y. Li, Z. Lü, B. Wei, X.Q. Huang, J.P. Miao, Z.G. Liu Performances of Ba0.5Sr0.5Co0.6Fe0.4O3–δ–Ce0.8Sm0.2O1.9 composite cathode materials for IT-SOFC. J. Alloys Compd. 448, 116–121 (2008)CrossRef
31.
go back to reference S. Lü, G. Long, Y. Ji, X. Meng, C. Sun, Characterization of SmBaCoFeO5 + δ-Ce0.9Gd0.1O1.95 composite cathodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 35, 7930–7935 (2010)CrossRef S. Lü, G. Long, Y. Ji, X. Meng, C. Sun, Characterization of SmBaCoFeO5 + δ-Ce0.9Gd0.1O1.95 composite cathodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 35, 7930–7935 (2010)CrossRef
32.
go back to reference Y. Ji, H. Wang, H. Zhang, Gd0.8Sr0.2CoO3 – δ–Sm0.1Ce0.9O1.95 composite cathode for intermediate temperature solid oxide fuel cells. Mater. Res. Bull. 85, 30–34 (2017)CrossRef Y. Ji, H. Wang, H. Zhang, Gd0.8Sr0.2CoO3 – δ–Sm0.1Ce0.9O1.95 composite cathode for intermediate temperature solid oxide fuel cells. Mater. Res. Bull. 85, 30–34 (2017)CrossRef
33.
go back to reference B. Wei, Z. Lü, X. Huang, M. Liu, N. Li, W. Su, J. Power Sourc. 176, 1–8 (2008)CrossRef B. Wei, Z. Lü, X. Huang, M. Liu, N. Li, W. Su, J. Power Sourc. 176, 1–8 (2008)CrossRef
34.
go back to reference K.T. Lee, A. Manthiram, Effect of cation doping on the physical properties and electrochemical performance of Nd0.6Sr0.4Co0.8M0.2O3–δ(M = Ti, Cr, Mn, Fe, Co, and Cu) cathodes. Solid State Ionics 178, 995–1000 (2007)CrossRef K.T. Lee, A. Manthiram, Effect of cation doping on the physical properties and electrochemical performance of Nd0.6Sr0.4Co0.8M0.2O3–δ(M = Ti, Cr, Mn, Fe, Co, and Cu) cathodes. Solid State Ionics 178, 995–1000 (2007)CrossRef
35.
go back to reference Ho-ChiehY.Kuan-Zong Fung, Electrode properties of La1–xSrxCuO2.5–δ as new cathode materials for intermediate-temperature SOFCs. J. Power Sourc. 133, 162–168 (2004)CrossRef Ho-ChiehY.Kuan-Zong Fung, Electrode properties of La1–xSrxCuO2.5–δ as new cathode materials for intermediate-temperature SOFCs. J. Power Sourc. 133, 162–168 (2004)CrossRef
36.
go back to reference M.M. Li, J.G. Cheng, Y. Gan, S.S. Li, B.B. He, W.Z. Sun, Effects of strontium doping on the structure, oxygen nonstoichiometry and electrochemical performance of Pr2–xSrxNi0.6Cu0.4O4 + δ (0.1 ≤ x ≤ 0.5) cathode materials. J. Power Sourc. 275, 151–158 (2015)CrossRef M.M. Li, J.G. Cheng, Y. Gan, S.S. Li, B.B. He, W.Z. Sun, Effects of strontium doping on the structure, oxygen nonstoichiometry and electrochemical performance of Pr2–xSrxNi0.6Cu0.4O4 + δ (0.1 ≤ x ≤ 0.5) cathode materials. J. Power Sourc. 275, 151–158 (2015)CrossRef
Metadata
Title
Performance assessment of Pr1−xSrxCo0.8Cu0.2O3−δ perovskite oxides as cathode material for solid oxide fuel cells with Ce0.8Sm0.2O1.9 electrolyte
Authors
Sanlong Wang
Xiangwei Meng
Jinghai Yang
Lili Yang
Lizhong Wang
Mingxing Song
Yiming Zhou
Shiquan Lü
Publication date
13-02-2019
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 6/2019
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-019-00886-0

Other articles of this Issue 6/2019

Journal of Materials Science: Materials in Electronics 6/2019 Go to the issue