Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 8/2024

07-07-2022 | Original Article

Performance research and optimization of the production of high-value nitrogen-containing compounds from tobacco stems via two-step hydrothermal liquefaction

Authors: Lefei Li, Jing Bai, Qianru Liu, Guilin Huang, Jiande Song, Chun Chang, Pan Li, Shusheng Pang

Published in: Biomass Conversion and Biorefinery | Issue 8/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

In order to obtain nitrogen-containing compounds (NCCs) from tobacco stems(TS) under mild conditions, glycine, urea, and ammonium acetate were added in hydrothermal liquefaction of TS. The oil, gas, and carbon produced by hydrothermal liquefaction was analyzed by GC/MS, GC, and XPS. It was found the yield of NCCs in bio-oil increased significantly after adding nitrogen source coliquefaction, and the two-step hydrothermal liquefaction also promoted the production of NCCs in bio-oil. Among them, urea promoted the production of high-value NCCs most obviously. NCCs account for 57.34% of bio-oil of two-step hydrothermal liquefaction. NCCs in bio-oil were mainly composed of nicotine, pyridines, pyrroles, and pyrazines. The two-step hydrothermal liquefaction promoted the precipitation of nicotine and inhibited the decomposition of nicotine. In the two-step hydrothermal liquefaction without nitrogen source, the relative content of nicotine was the highest, accounting for 21.95% of bio-oil components. The coliquefaction of nitrogen source and TS with two-step hydrothermal liquefaction could significantly increase the content of nitrogen in biochar and provide the possibility for the preparation of activated carbon. Two-step hydrothermal liquefaction and the introduction of urea were the best methods to prepare NCCs.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Wang J, Lu DQ, Zhao H et al (2009) Application of response surface methodology optimization for the production of caffeic acid from tobacco waste[J]. Afr J Biotech 8(8):1416–1424 Wang J, Lu DQ, Zhao H et al (2009) Application of response surface methodology optimization for the production of caffeic acid from tobacco waste[J]. Afr J Biotech 8(8):1416–1424
2.
go back to reference Zi W, Peng J, Zhang X et al (2013) Optimization of waste tobacco stem expansion by microwave radiation for biomass material using response surface methodology[J]. J Taiwan Inst Chem Eng 44(4):678–685CrossRef Zi W, Peng J, Zhang X et al (2013) Optimization of waste tobacco stem expansion by microwave radiation for biomass material using response surface methodology[J]. J Taiwan Inst Chem Eng 44(4):678–685CrossRef
3.
go back to reference Tuzzin G, Godinho M, Dettmer A et al (2016) Nanofibrillated cellulose from tobacco industry wastes[J]. Carbohyd Polym 148:69–77CrossRef Tuzzin G, Godinho M, Dettmer A et al (2016) Nanofibrillated cellulose from tobacco industry wastes[J]. Carbohyd Polym 148:69–77CrossRef
4.
go back to reference Peševski MĐ, Iliev BM ,Živković Dragić LJ, et al (2010) Possibilities for utilization of tobacco stems for production of energetic briquettes. J Agric Sci 55(1):45–54 Peševski MĐ, Iliev BM ,Živković Dragić LJ, et al (2010) Possibilities for utilization of tobacco stems for production of energetic briquettes. J Agric Sci 55(1):45–54
5.
go back to reference Saengsuriwong R, Onsree T, Phromphithak S et al (2021) Conversion of tobacco processing waste to biocrude oil via hydrothermal liquefaction in a multiple batch reactor. Clean Technol Environ Policy 1–11 Saengsuriwong R, Onsree T, Phromphithak S et al (2021) Conversion of tobacco processing waste to biocrude oil via hydrothermal liquefaction in a multiple batch reactor. Clean Technol Environ Policy 1–11
6.
go back to reference Zhu KM, Zheng ZF, Zhen-Jie LI et al (2019) Study on technology and products of aqueous liquefaction tobacco under subcritical condition. Guangzhou Chemical Industry 47(21):75–79 Zhu KM, Zheng ZF, Zhen-Jie LI et al (2019) Study on technology and products of aqueous liquefaction tobacco under subcritical condition. Guangzhou Chemical Industry 47(21):75–79
7.
go back to reference Bai J, Gao H, Xu J et al (2022) Comprehensive study on the pyrolysis product characteristics of tobacco stems based on a novel nitrogen-enriched pyrolysis method. Energy 242 Bai J, Gao H, Xu J et al (2022) Comprehensive study on the pyrolysis product characteristics of tobacco stems based on a novel nitrogen-enriched pyrolysis method. Energy 242
8.
go back to reference Cao L, Zhang C, Chen H et al (2017) Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresour Technol 245:1184–1193 Cao L, Zhang C, Chen H et al (2017) Hydrothermal liquefaction of agricultural and forestry wastes: state-of-the-art review and future prospects. Bioresour Technol 245:1184–1193
9.
go back to reference Saral JS, Ranganathan P (2022) Catalytic hydrothermal liquefaction of Spirulina platensis for biocrude production using Red mud. Biomass Convers Biorefin 12(1):195–208 Saral JS, Ranganathan P (2022) Catalytic hydrothermal liquefaction of Spirulina platensis for biocrude production using Red mud. Biomass Convers Biorefin 12(1):195–208
10.
go back to reference Leng L, Yang L, Chen J et al (2020) A review on pyrolysis of protein-rich biomass: nitrogen transformation[J]. Biores Technol 315:123801CrossRef Leng L, Yang L, Chen J et al (2020) A review on pyrolysis of protein-rich biomass: nitrogen transformation[J]. Biores Technol 315:123801CrossRef
11.
go back to reference Leng L, Zhang W, Peng H et al (2020) Nitrogen in bio-oil produced from hydrothermal liquefaction of biomass: a review. Chem Eng J 401:126030 Leng L, Zhang W, Peng H et al (2020) Nitrogen in bio-oil produced from hydrothermal liquefaction of biomass: a review. Chem Eng J 401:126030
12.
go back to reference Scientific W (2003) Asia pacific biotech news. Asia Pacific Biotech News 7(26):1649–1705 Scientific W (2003) Asia pacific biotech news. Asia Pacific Biotech News 7(26):1649–1705
13.
go back to reference Bae YJ, Ryu C, Jeon JK et al (2011) The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. Bioresour Technol 102(3):3512–3520 Bae YJ, Ryu C, Jeon JK et al (2011) The characteristics of bio-oil produced from the pyrolysis of three marine macroalgae. Bioresour Technol 102(3):3512–3520
14.
go back to reference Marcilla A, León M, García ÁN et al (2012) Upgrading of tannery wastes under fast and slow pyrolysis conditions[J]. Ind Eng Chem Res 51(8):3246–3255CrossRef Marcilla A, León M, García ÁN et al (2012) Upgrading of tannery wastes under fast and slow pyrolysis conditions[J]. Ind Eng Chem Res 51(8):3246–3255CrossRef
15.
go back to reference Zhou K, Zhou W, Du Y et al (2015) High-performance supercapacitors based on nitrogen-doped porous carbon from surplus sludge[J]. Sci Adv Mater 7(3):571–578CrossRef Zhou K, Zhou W, Du Y et al (2015) High-performance supercapacitors based on nitrogen-doped porous carbon from surplus sludge[J]. Sci Adv Mater 7(3):571–578CrossRef
16.
go back to reference Chen W, Yang H, Chen Y et al (2016) Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials[J]. J Anal Appl Pyrolysis 120(jul.):186–193CrossRef Chen W, Yang H, Chen Y et al (2016) Biomass pyrolysis for nitrogen-containing liquid chemicals and nitrogen-doped carbon materials[J]. J Anal Appl Pyrolysis 120(jul.):186–193CrossRef
17.
go back to reference Mei JA, Db A, Tw B et al (2021) Co-pyrolysis of cellulose and urea blend: Nitrogen conversion and effects of parameters on nitrogenous compounds distributions in bio-oil. J Anal Appl Pyrol 157:105177CrossRef Mei JA, Db A, Tw B et al (2021) Co-pyrolysis of cellulose and urea blend: Nitrogen conversion and effects of parameters on nitrogenous compounds distributions in bio-oil. J Anal Appl Pyrol 157:105177CrossRef
18.
go back to reference Xia Q, Yan B, Wang H et al (2021) Production of bio-oils enriched with aroma compounds from tobacco waste fast pyrolysis in a fluidized bed reactor. Biomass Convers Biorefin 11(5):1611–1619CrossRef Xia Q, Yan B, Wang H et al (2021) Production of bio-oils enriched with aroma compounds from tobacco waste fast pyrolysis in a fluidized bed reactor. Biomass Convers Biorefin 11(5):1611–1619CrossRef
19.
go back to reference Li K, Zhu C, Zhang L et al (2016) Study on pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source[J]. Bioresour Technol 209:142–147CrossRef Li K, Zhu C, Zhang L et al (2016) Study on pyrolysis characteristics of lignocellulosic biomass impregnated with ammonia source[J]. Bioresour Technol 209:142–147CrossRef
20.
go back to reference Phromphithak S, Onsree T, Saengsuriwong R et al (2021) Compositional analysis of bio-oils from hydrothermal liquefaction of tobacco residues using two-dimensional gas chromatography and time-of-flight mass spectrometry[J]. Sci Prog 104(4):e0254485-e261852CrossRef Phromphithak S, Onsree T, Saengsuriwong R et al (2021) Compositional analysis of bio-oils from hydrothermal liquefaction of tobacco residues using two-dimensional gas chromatography and time-of-flight mass spectrometry[J]. Sci Prog 104(4):e0254485-e261852CrossRef
21.
go back to reference Zhuang X, Huang Y, Yin X et al (2017) Research on bio-oil production from high-protein algae via two-step hydrothermal liquefaction. Acta Petrolei Sinica (Petroleum Processing Section) 33(5):1007–1016 Zhuang X, Huang Y, Yin X et al (2017) Research on bio-oil production from high-protein algae via two-step hydrothermal liquefaction. Acta Petrolei Sinica (Petroleum Processing Section) 33(5):1007–1016
22.
go back to reference Kang K, Quitain AT, Daimon H et al (2001) Optimization of amino acids production from waste fish entrails by hydrolysis in sub and supercritical water[J]. Can J Chem Eng 79(1):65–70CrossRef Kang K, Quitain AT, Daimon H et al (2001) Optimization of amino acids production from waste fish entrails by hydrolysis in sub and supercritical water[J]. Can J Chem Eng 79(1):65–70CrossRef
23.
go back to reference Kang KY, Chun BS (2004) Behavior of amino acid production from hydrothermal treatment of fish-derived wastes[J]. Korean J Chem Eng 21(6):1147–1152CrossRef Kang KY, Chun BS (2004) Behavior of amino acid production from hydrothermal treatment of fish-derived wastes[J]. Korean J Chem Eng 21(6):1147–1152CrossRef
24.
go back to reference Cheng CL, Yang YQ, Song H et al (2014) Optimization of Maillard reaction conditions of fructose and hydroxyproline[J]. J Henan Agric Sci 43(4):147–151 Cheng CL, Yang YQ, Song H et al (2014) Optimization of Maillard reaction conditions of fructose and hydroxyproline[J]. J Henan Agric Sci 43(4):147–151
25.
go back to reference Tang X, Zhang C, Yang X (2019) Hydrothermal liquefaction of model compounds protein and glucose: effect of maillard reaction on low lipid microalgae[J]. IOP Conf Ser Mater Sci Eng 611:012026CrossRef Tang X, Zhang C, Yang X (2019) Hydrothermal liquefaction of model compounds protein and glucose: effect of maillard reaction on low lipid microalgae[J]. IOP Conf Ser Mater Sci Eng 611:012026CrossRef
26.
go back to reference Xu ZX, Cheng JH, He ZX et al (2019) Hydrothermal liquefaction of cellulose in ammonia/water[J]. Biores Technol 278:311–317CrossRef Xu ZX, Cheng JH, He ZX et al (2019) Hydrothermal liquefaction of cellulose in ammonia/water[J]. Biores Technol 278:311–317CrossRef
27.
go back to reference Kruse A, Kruoka A, Schwarzkopf V et al (2005) Influence of proteins on the hydrothermal gasification and liquefaction of biomass 1 Comparison of different feedstocks[J]. Ind Eng Chem Res 44(9):3013–3020CrossRef Kruse A, Kruoka A, Schwarzkopf V et al (2005) Influence of proteins on the hydrothermal gasification and liquefaction of biomass 1 Comparison of different feedstocks[J]. Ind Eng Chem Res 44(9):3013–3020CrossRef
28.
go back to reference Deniel M, Haarlemmer G, Roubaud A et al (2016) Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction[J]. Renew Sustain Energy Rev 54(FEB.):1632–1652CrossRef Deniel M, Haarlemmer G, Roubaud A et al (2016) Energy valorisation of food processing residues and model compounds by hydrothermal liquefaction[J]. Renew Sustain Energy Rev 54(FEB.):1632–1652CrossRef
29.
go back to reference Fan Y, Hornung U, Dahmen N et al (2018) Hydrothermal liquefaction of protein-containing biomass: study of model compounds for Maillard reactions[J]. Biomass Convers Biorefin 8(4):909–923CrossRef Fan Y, Hornung U, Dahmen N et al (2018) Hydrothermal liquefaction of protein-containing biomass: study of model compounds for Maillard reactions[J]. Biomass Convers Biorefin 8(4):909–923CrossRef
30.
go back to reference Matayeva A, Bianchi D, Chiaberge S et al (2019) Elucidation of reaction pathways of nitrogenous species by hydrothermal liquefaction process of model compounds[J]. Fuel 240:169–178CrossRef Matayeva A, Bianchi D, Chiaberge S et al (2019) Elucidation of reaction pathways of nitrogenous species by hydrothermal liquefaction process of model compounds[J]. Fuel 240:169–178CrossRef
31.
go back to reference Xu YH, Li MF (2021) Hydrothermal liquefaction of lignocellulose for value-added products: mechanism, parameter and production application. Bioresour Technol 342:126035 Xu YH, Li MF (2021) Hydrothermal liquefaction of lignocellulose for value-added products: mechanism, parameter and production application. Bioresour Technol 342:126035
32.
go back to reference Yza B, Zhen WA, Cl A et al (2020) Integrated production of aromatic amines, aromatic hydrocarbon and N-heterocyclic bio-char from catalytic pyrolysis of biomass impregnated with ammonia sources over Zn/HZSM-5 catalyst[J]. J Energy Inst 93(1):210–223CrossRef Yza B, Zhen WA, Cl A et al (2020) Integrated production of aromatic amines, aromatic hydrocarbon and N-heterocyclic bio-char from catalytic pyrolysis of biomass impregnated with ammonia sources over Zn/HZSM-5 catalyst[J]. J Energy Inst 93(1):210–223CrossRef
33.
go back to reference Sui X, Wu S (2010) Study on liquefaction of bagasse alkali lignin for the production of phenolic chemicals. Isetpp 428–431 Sui X, Wu S (2010) Study on liquefaction of bagasse alkali lignin for the production of phenolic chemicals. Isetpp 428–431
34.
go back to reference Wu CW, Wu SY, Peng WC et al (2011) Hydrothermal liquefaction of cellulose under different atmospheres. J East China Univ Sci Technol 37(4):430–434 Wu CW, Wu SY, Peng WC et al (2011) Hydrothermal liquefaction of cellulose under different atmospheres. J East China Univ Sci Technol 37(4):430–434
35.
go back to reference Ren JL, Sun RC, Liu CF (2007) A view of etherification of hemicelluloses[J]. J Cellul Sci Technol 15(2):74–78 Ren JL, Sun RC, Liu CF (2007) A view of etherification of hemicelluloses[J]. J Cellul Sci Technol 15(2):74–78
36.
go back to reference Pavlovič I, Knez Ž, Škerget M (2013) Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research. J Agric Food Chem 61(34):8003–8025CrossRef Pavlovič I, Knez Ž, Škerget M (2013) Hydrothermal reactions of agricultural and food processing wastes in sub- and supercritical water: a review of fundamentals, mechanisms, and state of research. J Agric Food Chem 61(34):8003–8025CrossRef
37.
go back to reference Jianwen L, Watson J et al (2018) Biocrude production and heavy metal migration during hydrothermal liquefaction of swine manure. Process Saf Environ Prot 115:108–115 Jianwen L, Watson J et al (2018) Biocrude production and heavy metal migration during hydrothermal liquefaction of swine manure. Process Saf Environ Prot 115:108–115
38.
go back to reference Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters[J]. Renew Sustain Energy Rev 57(28):1126–1140CrossRef Kan T, Strezov V, Evans TJ (2016) Lignocellulosic biomass pyrolysis: a review of product properties and effects of pyrolysis parameters[J]. Renew Sustain Energy Rev 57(28):1126–1140CrossRef
39.
go back to reference Xin F, Xiangfei L, Zhe Z, Yuhong X (2021) Study on preparation of bio-oil by co-hydrothermal liquefaction of municipal sludge and bacterial bran. Modern Chem Ind 41(2):92–95 Xin F, Xiangfei L, Zhe Z, Yuhong X (2021) Study on preparation of bio-oil by co-hydrothermal liquefaction of municipal sludge and bacterial bran. Modern Chem Ind 41(2):92–95
40.
go back to reference Chen W, Yang H, Chen Y et al (2018) Influence of biochar addition on nitrogen transformation during co-pyrolysis of algae and lignocellulosic biomass[J]. Environ Sci Technol 52(16):9514–9521CrossRef Chen W, Yang H, Chen Y et al (2018) Influence of biochar addition on nitrogen transformation during co-pyrolysis of algae and lignocellulosic biomass[J]. Environ Sci Technol 52(16):9514–9521CrossRef
Metadata
Title
Performance research and optimization of the production of high-value nitrogen-containing compounds from tobacco stems via two-step hydrothermal liquefaction
Authors
Lefei Li
Jing Bai
Qianru Liu
Guilin Huang
Jiande Song
Chun Chang
Pan Li
Shusheng Pang
Publication date
07-07-2022
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 8/2024
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-022-03006-x

Other articles of this Issue 8/2024

Biomass Conversion and Biorefinery 8/2024 Go to the issue