Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 8/2024

17-08-2022 | Original Article

Sustainable bioconversion of agricultural waste substrates into poly (3-hydroxyhexanoate) (mcl-PHA) by Cupriavidus necator DSM 428

Authors: Sadia Razzaq, Salma Shahid, Robina Farooq, Sadia Noreen, Sofia Perveen, Muhammad Bilal

Published in: Biomass Conversion and Biorefinery | Issue 8/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polyhydroxyalkanoate (PHA) synthesised by microbial strains has properties (biocompatible, non-toxic, and biodegradable) that make it appropriate as an environment-friendly plastic component. This research evaluated the cheap carbon substrates (molasses, olive oil, and their mixture) of industrial waste as an alternative to costly ones for the manufacturing enhancement of mcl-PHA by C. necator. The strain was cultured in both nutrient and mineral media with and without nitrogen. mcl-PHA content was found to be 24.33%, 18.66%, and 40% with molasses, olive oil, and a mixture of both substrates, respectively. The chromatographic technique, GCMS, was utilized to confirm the types of PHA monomers (3HB and HHx). The maximum PHA content produced was 2.03 g/L using a combination of substrates compared to molasses (1.41 g/L) and olive oil (1.12 g/L). Morphology exhibits pseudo-spherical granules with comparatively consistent distribution by SEM. FTIR spectroscopy was used to detect PHA presence rapidly. In conclusion, C. necator DSM 428 cultivated on a mixture of substrates is proficient in manufacturing mcl-PHA along with scl-PHA; the type of PHA monomer depends upon the selection of substrate.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chidambarampadmavathy K, Karthikeyan OP, Heimann K (2017) Sustainable bio-plastic production through landfill methane recycling. Renew Sustain Energy Rev 71:555–562CrossRef Chidambarampadmavathy K, Karthikeyan OP, Heimann K (2017) Sustainable bio-plastic production through landfill methane recycling. Renew Sustain Energy Rev 71:555–562CrossRef
2.
go back to reference Napathorn S et al (2010) Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Degrad Stab 95(10):2003–2012CrossRef Napathorn S et al (2010) Biosynthesis and biocompatibility of biodegradable poly(3-hydroxybutyrate-co-4-hydroxybutyrate). Polym Degrad Stab 95(10):2003–2012CrossRef
3.
go back to reference Amache R et al (2013) Advances in PHAs production. Chem Eng Trans 32:931–936 Amache R et al (2013) Advances in PHAs production. Chem Eng Trans 32:931–936
4.
go back to reference Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191(10):3195–3202CrossRef Jendrossek D (2009) Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes). J Bacteriol 191(10):3195–3202CrossRef
5.
go back to reference Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–32CrossRef Jendrossek D, Handrick R (2002) Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–32CrossRef
7.
go back to reference Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–12CrossRef Zinn M, Witholt B, Egli T (2001) Occurrence, synthesis and medical application of bacterial polyhydroxyalkanoate. Adv Drug Deliv Rev 53:5–12CrossRef
8.
go back to reference Salma S et al (2021) Polyhydroxyalkanoates: next generation natural biomolecules and a solution for the world’s future economy. Int J Biol Macrol 166:297–321CrossRef Salma S et al (2021) Polyhydroxyalkanoates: next generation natural biomolecules and a solution for the world’s future economy. Int J Biol Macrol 166:297–321CrossRef
9.
go back to reference Kunasundari, Sudesh (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 5(7):620–634CrossRef Kunasundari, Sudesh (2011) Isolation and recovery of microbial polyhydroxyalkanoates. Express Polym Lett 5(7):620–634CrossRef
10.
go back to reference Wang S et al (2016) Modification and potential application of short-chain-length polyhydroxyalkanoate (SCL-PHA). Polymers 8:273CrossRef Wang S et al (2016) Modification and potential application of short-chain-length polyhydroxyalkanoate (SCL-PHA). Polymers 8:273CrossRef
12.
go back to reference Ahmad MG, Muhammad HA, Mohamad SMA (2015) Modification of polyhydroxyalkanoates (PHAs). RSC Green Chem 30:141–182 Ahmad MG, Muhammad HA, Mohamad SMA (2015) Modification of polyhydroxyalkanoates (PHAs). RSC Green Chem 30:141–182
13.
go back to reference Chee JY et al (2010) Bacterially produced polyhydroxyalkanoate (PHA): converting renewable resources into bioplastics. App Microbiol Microb Biotechnol 2:1395–1404 Chee JY et al (2010) Bacterially produced polyhydroxyalkanoate (PHA): converting renewable resources into bioplastics. App Microbiol Microb Biotechnol 2:1395–1404
14.
go back to reference Ojumu TV, Yu J, Solomon BO (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. Afr J Biotechnol 3(1):18–24CrossRef Ojumu TV, Yu J, Solomon BO (2004) Production of polyhydroxyalkanoates, a bacterial biodegradable polymer. Afr J Biotechnol 3(1):18–24CrossRef
15.
go back to reference Aramvash A (2016) Effective enhancement of hydroxyvalerate content of PHBV in Cupriavidus necator and its characterization. Int J Biol Macromol 87:397–404CrossRef Aramvash A (2016) Effective enhancement of hydroxyvalerate content of PHBV in Cupriavidus necator and its characterization. Int J Biol Macromol 87:397–404CrossRef
18.
go back to reference Munawar KMM, Simarani AK (2016) Bioconversion of mix free fatty acids to poly-3-hydroxyalkanoates by Psoudomonas putida BET001 and modelling of fermentation in shake flask. Electron J Biotechnol 19:50–55CrossRef Munawar KMM, Simarani AK (2016) Bioconversion of mix free fatty acids to poly-3-hydroxyalkanoates by Psoudomonas putida BET001 and modelling of fermentation in shake flask. Electron J Biotechnol 19:50–55CrossRef
19.
go back to reference Sindhu R et al (2013) Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem Eng J 78:67–72CrossRef Sindhu R et al (2013) Pentose-rich hydrolysate from acid pretreated rice straw as a carbon source for the production of poly-3-hydroxybutyrate. Biochem Eng J 78:67–72CrossRef
20.
go back to reference Volova T, Sapozhnikova K, Zhila N (2020) Cupriavidus necator B-10646 growth and polyhydroxyalkanoates production on different plant oils. Int J Biol Macromol 164:121–130CrossRef Volova T, Sapozhnikova K, Zhila N (2020) Cupriavidus necator B-10646 growth and polyhydroxyalkanoates production on different plant oils. Int J Biol Macromol 164:121–130CrossRef
21.
go back to reference Chaudhry WN et al (2011) Screening for polyhydroxyalkanoate (PHA)-producing bacterial strains and comparison of PHA production from various inexpensive carbon sources. Ann Microbiol 61:623–629CrossRef Chaudhry WN et al (2011) Screening for polyhydroxyalkanoate (PHA)-producing bacterial strains and comparison of PHA production from various inexpensive carbon sources. Ann Microbiol 61:623–629CrossRef
22.
go back to reference Li M, Wilkins M (2020) Fed-batch cultivation and adding supplements to increase yields of polyhydroxybutyrate production by Cupriavidus necator from corn stover alkaline pretreatment liquor. Biores Technol 299:122676CrossRef Li M, Wilkins M (2020) Fed-batch cultivation and adding supplements to increase yields of polyhydroxybutyrate production by Cupriavidus necator from corn stover alkaline pretreatment liquor. Biores Technol 299:122676CrossRef
23.
go back to reference Gonzalo A et al (2013) Production of polyhydroxyalkanoates by Cupriavidus necator from treated olive mill wastewater. Environ Eng Manag J 12(S11):97–100 Gonzalo A et al (2013) Production of polyhydroxyalkanoates by Cupriavidus necator from treated olive mill wastewater. Environ Eng Manag J 12(S11):97–100
24.
go back to reference Li M, Wilkins M (2020) Flow cytometry for quantitation of polyhydroxybutyrate production by Cupriavidus necator using alkaline pretreated liquor from corn stover. Bioresour Technol 295 Li M, Wilkins M (2020) Flow cytometry for quantitation of polyhydroxybutyrate production by Cupriavidus necator using alkaline pretreated liquor from corn stover. Bioresour Technol 295
25.
go back to reference SharifzadehBaei M, Najafpour GD, Younesi H, Tabandeh F, Eisazadeh H (2009) Poly(3-hydroxybutyrate) Synthesis by Cupriavidus necator DSMZ 545 Utilizing Various Carbon Sources. World Appl Sci J 7:157–161 SharifzadehBaei M, Najafpour GD, Younesi H, Tabandeh F, Eisazadeh H (2009) Poly(3-hydroxybutyrate) Synthesis by Cupriavidus necator DSMZ 545 Utilizing Various Carbon Sources. World Appl Sci J 7:157–161
29.
go back to reference Salma S et al (2013) Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: evidence of an atypical metabolism in Bacillus megaterium DSM 509. J Biosci Bioeng 116(3):302–308CrossRef Salma S et al (2013) Impact of carbon source and variable nitrogen conditions on bacterial biosynthesis of polyhydroxyalkanoates: evidence of an atypical metabolism in Bacillus megaterium DSM 509. J Biosci Bioeng 116(3):302–308CrossRef
31.
go back to reference Amiel C (2000) Potentiality of Fourier Transform Infrared Spectroscopy (FTIR) for discrimination and identification of dairy Lactic acid bacteria. Lait 80(4):445–459CrossRef Amiel C (2000) Potentiality of Fourier Transform Infrared Spectroscopy (FTIR) for discrimination and identification of dairy Lactic acid bacteria. Lait 80(4):445–459CrossRef
32.
go back to reference Salma S et al (2021) New model development for qualitative and quantitative analysis of microbial polyhydroxyalkanoates: a comparison of Fourier Transform Infrared Spectroscopy with Gas Chromatography. J Biotechnol 329:38–48 Salma S et al (2021) New model development for qualitative and quantitative analysis of microbial polyhydroxyalkanoates: a comparison of Fourier Transform Infrared Spectroscopy with Gas Chromatography. J Biotechnol 329:38–48
34.
go back to reference International Olive Council (2009) Official method of analysis. Determination of biophenols in olive oil by HPLC. COI/T.20/Doc. No. 29 International Olive Council (2009) Official method of analysis. Determination of biophenols in olive oil by HPLC. COI/T.20/Doc. No. 29
36.
go back to reference Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44:509–515CrossRef Cavalheiro JMBT, de Almeida MCMD, Grandfils C, da Fonseca MMR (2009) Poly(3-hydroxybutyrate) production by Cupriavidus necator using waste glycerol. Process Biochem 44:509–515CrossRef
37.
go back to reference Berezina N (2013) Novel approach for productivity enhancement of polyhydroxyalkanoates (PHA) production by Cupriavidus necator DSM 545. New Biotechnol 30(2):192–195CrossRef Berezina N (2013) Novel approach for productivity enhancement of polyhydroxyalkanoates (PHA) production by Cupriavidus necator DSM 545. New Biotechnol 30(2):192–195CrossRef
40.
go back to reference Helm D, Labischinski H, Schallehn G, Naumann D (1991) Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J Gen Microbiol 137(1):69–79 Helm D, Labischinski H, Schallehn G, Naumann D (1991) Classification and identification of bacteria by Fourier-transform infrared spectroscopy. J Gen Microbiol 137(1):69–79
41.
go back to reference Atlić A, Koller M, Scherzer D, Kutschera C, Grillo-Fernandes E, Horvat P, Chiellini E, Braunegg G (2011) Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl Microbiol Biotechnol 91(2):295–304 Atlić A, Koller M, Scherzer D, Kutschera C, Grillo-Fernandes E, Horvat P, Chiellini E, Braunegg G (2011) Continuous production of poly([R]-3-hydroxybutyrate) by Cupriavidus necator in a multistage bioreactor cascade. Appl Microbiol Biotechnol 91(2):295–304
42.
go back to reference Oliveira FC, Freire DMG, Castilho LR (2004) Production of poly(3-hydroxybutyrate) by solid-state fermentation with Ralstonia eutropha. Biotechnol Lett 26(24):1851–1855CrossRef Oliveira FC, Freire DMG, Castilho LR (2004) Production of poly(3-hydroxybutyrate) by solid-state fermentation with Ralstonia eutropha. Biotechnol Lett 26(24):1851–1855CrossRef
43.
go back to reference Dennis D, McCoy M, Stangl A, Valentin HE, Wu Z (1998) Formation of poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) by PHA synthase from Ralstonia eutropha. J Biotechnol 64(2–3):177–186CrossRef Dennis D, McCoy M, Stangl A, Valentin HE, Wu Z (1998) Formation of poly(3-hydroxybutyrate-co-3- hydroxyhexanoate) by PHA synthase from Ralstonia eutropha. J Biotechnol 64(2–3):177–186CrossRef
44.
go back to reference Rathinasabapathy A, Ramsay BA, Ramsay JA, Pérez-Guevara F (2014) A feeding strategy for incorporation of canola derived medium-chain-length monomers into the PHA produced by wild-type Cupriavidus necator. World J Microbiol Biotechnol 30(4):1409–1416 Rathinasabapathy A, Ramsay BA, Ramsay JA, Pérez-Guevara F (2014) A feeding strategy for incorporation of canola derived medium-chain-length monomers into the PHA produced by wild-type Cupriavidus necator. World J Microbiol Biotechnol 30(4):1409–1416
48.
go back to reference Saratale GD, Oh M-K (2015) Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock. Int J Biol Macromol 80:627–635 Saratale GD, Oh M-K (2015) Characterization of poly-3-hydroxybutyrate (PHB) produced from Ralstonia eutropha using an alkali-pretreated biomass feedstock. Int J Biol Macromol 80:627–635
Metadata
Title
Sustainable bioconversion of agricultural waste substrates into poly (3-hydroxyhexanoate) (mcl-PHA) by Cupriavidus necator DSM 428
Authors
Sadia Razzaq
Salma Shahid
Robina Farooq
Sadia Noreen
Sofia Perveen
Muhammad Bilal
Publication date
17-08-2022
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 8/2024
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-022-03194-6

Other articles of this Issue 8/2024

Biomass Conversion and Biorefinery 8/2024 Go to the issue