Skip to main content
Top
Published in: Biomass Conversion and Biorefinery 8/2024

02-07-2022 | Original Article

Xylitol production from rice straw hemicellulosic hydrolysate by Candida tropicalis GS18 immobilized on bacterial cellulose-sodium alginate matrix

Authors: Payal Guleria, Sundeep Kaur, Arushdeep Sidana, Sudesh Kumar Yadav

Published in: Biomass Conversion and Biorefinery | Issue 8/2024

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Xylitol is gaining great attention in current pharmaceutical markets. Commercial production by chemical hydrogenation of xylose is however associated with several inevitable drawbacks. Biotechnological route of xylitol production is a superior alternative, if performed at a lower process costs. The goal of present study was to evaluate the efficiency of bacterial cellulose-sodium alginate (BC-AG) composite as an immobilization matrix for Candida tropicalis GS18 in the production of xylitol through a repeated batch fermentation of rice straw hemicellulosic hydrolysate. Different concentrations of bacterial cellulose, sodium alginate, and calcium chloride were screened to select the stable composite for immobilization. Comparative studies for xylitol production using adsorbed yeast cells on BC-AG composite and suspended cells in different production media like synthetic, non-detoxified, and detoxified hydrolysate were carried out. BC-AG composite prepared by using 3.0% alginate and bacterial cellulose in 1:1 ratio through cross-linking with 3.0% CaCl2 solution was found to be most suitable for cell immobilization. The maximum xylitol yield and productivity obtained from immobilized cells on BC-AG composite in synthetic and detoxified media were 0.67 g/g; 0.70 g/L/h and 0.55 g/g; 0.52 g/L/h, respectively. The composite was successfully used for up to five repeated batch fermentations in synthetic and detoxified hydrolysate media. However, the composite was unstable in the non-detoxified medium. Hence, BC-AG composite was found to be an effective immobilization matrix for bioconversion of xylose into xylitol.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Benahmed AG, Gasmi A, Arshad M, Shanaida M, Lysiuk R, Peana M, Pshyk- Titko I, Adamiv S, Shanaida Y, Bjørklund G (2020) Health benefits of xylitol. Appl Microbiol Biotechnol 104:7225–7237CrossRef Benahmed AG, Gasmi A, Arshad M, Shanaida M, Lysiuk R, Peana M, Pshyk- Titko I, Adamiv S, Shanaida Y, Bjørklund G (2020) Health benefits of xylitol. Appl Microbiol Biotechnol 104:7225–7237CrossRef
2.
go back to reference Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23:57–91CrossRef Campano C, Balea A, Blanco A, Negro C (2016) Enhancement of the fermentation process and properties of bacterial cellulose: a review. Cellulose 23:57–91CrossRef
3.
go back to reference Carvalho W, Silva SSD, Converti A, Vitolo M, Felipe MG, Roberto IC, Silva MB, Mancilha IM (2002) Use of immobilized Candida yeast cells for xylitol production from sugarcane bagasse hydrolysate: cell immobilization conditions. Appl Biochem Biotechnol 98–100:489–496CrossRef Carvalho W, Silva SSD, Converti A, Vitolo M, Felipe MG, Roberto IC, Silva MB, Mancilha IM (2002) Use of immobilized Candida yeast cells for xylitol production from sugarcane bagasse hydrolysate: cell immobilization conditions. Appl Biochem Biotechnol 98–100:489–496CrossRef
4.
go back to reference Costa AFS, Rocha MAV, Sarubbo LA (2017) Bacterial cellulose: an ecofriendly biotextile. Int J Text Fashion Technol 7:11–26 Costa AFS, Rocha MAV, Sarubbo LA (2017) Bacterial cellulose: an ecofriendly biotextile. Int J Text Fashion Technol 7:11–26
5.
go back to reference Cunha MAA, Converti A, Santos JC, Ferreira STS, Da Silva SS (2009) PVA-hydrogel entrapped Candida guilliermondii for xylitol production from sugarcane hemicellulose hydrolysate. Appl Biochem Biotechnol 157:527–537CrossRef Cunha MAA, Converti A, Santos JC, Ferreira STS, Da Silva SS (2009) PVA-hydrogel entrapped Candida guilliermondii for xylitol production from sugarcane hemicellulose hydrolysate. Appl Biochem Biotechnol 157:527–537CrossRef
7.
go back to reference Ebrahimi F, Sadeghizadeh A, Neysan F, Heydari M (2019) Fabrication of nanofibers using sodium alginate and Poly (Vinyl alcohol) for the removal of Cd2+ ions from aqueous solutions: adsorption mechanism, kinetics and thermodynamics. Heliyon 5(11):e02941CrossRef Ebrahimi F, Sadeghizadeh A, Neysan F, Heydari M (2019) Fabrication of nanofibers using sodium alginate and Poly (Vinyl alcohol) for the removal of Cd2+ ions from aqueous solutions: adsorption mechanism, kinetics and thermodynamics. Heliyon 5(11):e02941CrossRef
8.
go back to reference Eş I, Vieira JDG, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99(5):2065–2082CrossRef Eş I, Vieira JDG, Amaral AC (2015) Principles, techniques, and applications of biocatalyst immobilization for industrial application. Appl Microbiol Biotechnol 99(5):2065–2082CrossRef
9.
go back to reference Gupta R, Hemansi GS, Shukla R, Kuhad RC (2017) Study of charcoal detoxification of acid hydrolysate from corncob and its fermentation to xylitol. J Environ Chem Eng 5(5):4573–4582CrossRef Gupta R, Hemansi GS, Shukla R, Kuhad RC (2017) Study of charcoal detoxification of acid hydrolysate from corncob and its fermentation to xylitol. J Environ Chem Eng 5(5):4573–4582CrossRef
10.
go back to reference Hernández-Pérez AF, de Arruda PV, Sene L, da Silva SS, Chandel AK, de Almeida Felipe MDG (2019) Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Crit Rev Biotechnol 39:924–943CrossRef Hernández-Pérez AF, de Arruda PV, Sene L, da Silva SS, Chandel AK, de Almeida Felipe MDG (2019) Xylitol bioproduction: state-of-the-art, industrial paradigm shift, and opportunities for integrated biorefineries. Crit Rev Biotechnol 39:924–943CrossRef
11.
go back to reference Hernández IP, Pérez-Pimienta JA, Messina S, Saldaña D, Claudia E (2012) Dilute sulfuric acid hydrolysis of tropical region biomass. J Renew Sustain Energy 4(2):021201CrossRef Hernández IP, Pérez-Pimienta JA, Messina S, Saldaña D, Claudia E (2012) Dilute sulfuric acid hydrolysis of tropical region biomass. J Renew Sustain Energy 4(2):021201CrossRef
12.
go back to reference Ji L, Zhang F, Zhu L, Jiang J (2021) An in-situ fabrication of bamboo bacterial cellulose/sodium alginate nanocomposite hydrogels as carrier materials for controlled protein drug delivery. Int J Biol Macromol 170:459–468CrossRef Ji L, Zhang F, Zhu L, Jiang J (2021) An in-situ fabrication of bamboo bacterial cellulose/sodium alginate nanocomposite hydrogels as carrier materials for controlled protein drug delivery. Int J Biol Macromol 170:459–468CrossRef
13.
go back to reference Jia H, Shao T, Zhong C, Li H, Jiang M, Zhou H, Wei P (2016) Evaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis. Carbohydr Polym 151:676–683CrossRef Jia H, Shao T, Zhong C, Li H, Jiang M, Zhou H, Wei P (2016) Evaluation of xylitol production using corncob hemicellulosic hydrolysate by combining tetrabutylammonium hydroxide extraction with dilute acid hydrolysis. Carbohydr Polym 151:676–683CrossRef
14.
go back to reference Kirdponpattara S, Phisalaphong M (2013) Bacterial cellulose–alginate composite sponge as a yeast cell carrier for ethanol production. Biochem Eng J 77:103–109CrossRef Kirdponpattara S, Phisalaphong M (2013) Bacterial cellulose–alginate composite sponge as a yeast cell carrier for ethanol production. Biochem Eng J 77:103–109CrossRef
15.
go back to reference Krishania M, Kumar V, Sangwan RS (2018) Integrated approach for extraction of xylose, cellulose, lignin and silica from rice straw. Bioresour Technol Reports 1:89–93CrossRef Krishania M, Kumar V, Sangwan RS (2018) Integrated approach for extraction of xylose, cellulose, lignin and silica from rice straw. Bioresour Technol Reports 1:89–93CrossRef
16.
go back to reference Kumar V, Krishania M, Sandhu P, Ahluwalia P, Gnansounou E, Sangwan RS (2017) Efficient detoxification of corn cob hydrolysate with ion-exchange resin for enhanced xylitol production by Candida tropicalis MTCC 6192. Bioresour Technol 251:416–419CrossRef Kumar V, Krishania M, Sandhu P, Ahluwalia P, Gnansounou E, Sangwan RS (2017) Efficient detoxification of corn cob hydrolysate with ion-exchange resin for enhanced xylitol production by Candida tropicalis MTCC 6192. Bioresour Technol 251:416–419CrossRef
17.
go back to reference Kumar V, Sharma DK, Bansal V, Mehta D, Sangwan RS, Yadav SK (2019) Efficient and economic process for the production of bacterial cellulose from isolated strain of Acetobacterpasteurianus of RSV-4 bacterium. Bioresour Technol 275:430–433CrossRef Kumar V, Sharma DK, Bansal V, Mehta D, Sangwan RS, Yadav SK (2019) Efficient and economic process for the production of bacterial cellulose from isolated strain of Acetobacterpasteurianus of RSV-4 bacterium. Bioresour Technol 275:430–433CrossRef
18.
go back to reference Logeswaran J, Shamsuddin AH, Silitonga AS, Mahlia TMI (2020) Prospect of using rice straw for power generation: a review. Environ Sci Pollut Res 27:25956–25969CrossRef Logeswaran J, Shamsuddin AH, Silitonga AS, Mahlia TMI (2020) Prospect of using rice straw for power generation: a review. Environ Sci Pollut Res 27:25956–25969CrossRef
19.
go back to reference López-Linares JC, Romero I, Cara C, Castro E, Mussatto SI (2018) Xylitol production by Debaryomyceshansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresour Technol 247:736–743CrossRef López-Linares JC, Romero I, Cara C, Castro E, Mussatto SI (2018) Xylitol production by Debaryomyceshansenii and Candida guilliermondii from rapeseed straw hemicellulosic hydrolysate. Bioresour Technol 247:736–743CrossRef
20.
go back to reference Millati R, Wikandari R, Ariyanto T, Putri RU, Taherzadeh MJ (2020) Pretreatment technologies for anaerobic digestion of lignocelluloses and toxic feedstocks. Bioresour Technol 304:122998CrossRef Millati R, Wikandari R, Ariyanto T, Putri RU, Taherzadeh MJ (2020) Pretreatment technologies for anaerobic digestion of lignocelluloses and toxic feedstocks. Bioresour Technol 304:122998CrossRef
21.
go back to reference Misra S, Raghuwanshi S, Saxena RK (2013) Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydr Polym 92:1596–1601CrossRef Misra S, Raghuwanshi S, Saxena RK (2013) Evaluation of corncob hemicellulosic hydrolysate for xylitol production by adapted strain of Candida tropicalis. Carbohydr Polym 92:1596–1601CrossRef
22.
go back to reference Mongkolkajit J, Pullsirisombat J, Limtong S, Phisalaphong M (2011) Alumina-doped alginate gel as a cell carrier for ethanol production in a packed bed bioreactor. Biotechnol Bioprocess 16:505–512CrossRef Mongkolkajit J, Pullsirisombat J, Limtong S, Phisalaphong M (2011) Alumina-doped alginate gel as a cell carrier for ethanol production in a packed bed bioreactor. Biotechnol Bioprocess 16:505–512CrossRef
23.
go back to reference Nemati M, Webb C (2011) Immobilized cell bioreactors. In Comprehensive biotechnology: volume 2: engineering fundamentals of biotechnology. Second Edition edn, vol. 2, Academic Press, Ltd, Burlington, pp. 331–346 Nemati M, Webb C (2011) Immobilized cell bioreactors. In Comprehensive biotechnology: volume 2: engineering fundamentals of biotechnology. Second Edition edn, vol. 2, Academic Press, Ltd, Burlington, pp. 331–346
24.
go back to reference Parajó JC, Dominguez H, Dominguez JM (1998) Biotechnological production of xylitol. Bioresour Technol 65:191–201CrossRef Parajó JC, Dominguez H, Dominguez JM (1998) Biotechnological production of xylitol. Bioresour Technol 65:191–201CrossRef
25.
go back to reference Pérez-Bibbins B, de Souza Oliveira RP, Torrado A, Aguilar-Uscanga MG, Domínguez JM (2014) Study of the potential of the air lift bioreactor for xylitol production in fed-batch cultures by Debaryomyceshansenii immobilized in alginate beads. Appl Microbiol Biotechnol 98(1):151–161CrossRef Pérez-Bibbins B, de Souza Oliveira RP, Torrado A, Aguilar-Uscanga MG, Domínguez JM (2014) Study of the potential of the air lift bioreactor for xylitol production in fed-batch cultures by Debaryomyceshansenii immobilized in alginate beads. Appl Microbiol Biotechnol 98(1):151–161CrossRef
26.
go back to reference Prabakaran G, Hoti SL (2008) Immobilization of alginate-encapsulated Bacillus thuringiensis var. israelensis containing different multivalent counterions for mosquito control. Curr Microbiol 57(2):111–114CrossRef Prabakaran G, Hoti SL (2008) Immobilization of alginate-encapsulated Bacillus thuringiensis var. israelensis containing different multivalent counterions for mosquito control. Curr Microbiol 57(2):111–114CrossRef
27.
go back to reference Prakash G, Varma AJ, Prabhune A, Shouche Y, Rao M (2011) Microbial production of xylitol from d-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyceshansenii. Bioresour Technol 102(3):3304–3308CrossRef Prakash G, Varma AJ, Prabhune A, Shouche Y, Rao M (2011) Microbial production of xylitol from d-xylose and sugarcane bagasse hemicellulose using newly isolated thermotolerant yeast Debaryomyceshansenii. Bioresour Technol 102(3):3304–3308CrossRef
28.
go back to reference Rafiqul ISM, Sakinah AMM (2013) Processes for the production of xylitol—a review. Food Rev Int 29(2):127–156CrossRef Rafiqul ISM, Sakinah AMM (2013) Processes for the production of xylitol—a review. Food Rev Int 29(2):127–156CrossRef
29.
go back to reference Rahman A, Hidayah N, Jamaliah MJ, Munaim A, Sakinah M, Rahman A, Fuzi R, Zaharah SF, Rosli MI (2020) Immobilization of recombinant Escherichia coli on multi-walled carbon nanotubes for xylitol production. Enzyme Microb Technol 135:109495CrossRef Rahman A, Hidayah N, Jamaliah MJ, Munaim A, Sakinah M, Rahman A, Fuzi R, Zaharah SF, Rosli MI (2020) Immobilization of recombinant Escherichia coli on multi-walled carbon nanotubes for xylitol production. Enzyme Microb Technol 135:109495CrossRef
30.
go back to reference Rao RS, Jyothi CP, Prakasham RS, Sarma PN, Rao LV (2006) Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresour Technol 97:1974–1978CrossRef Rao RS, Jyothi CP, Prakasham RS, Sarma PN, Rao LV (2006) Xylitol production from corn fiber and sugarcane bagasse hydrolysates by Candida tropicalis. Bioresour Technol 97:1974–1978CrossRef
31.
go back to reference Santos JC, Mussatto SI, da Cunha MAA, Silva SS (2005) Variables that affect xylitol production from sugarcane bagasse hydrolysate in a zeolite fluidized bed reactor. Biotechnol Prog 21:1639–1643CrossRef Santos JC, Mussatto SI, da Cunha MAA, Silva SS (2005) Variables that affect xylitol production from sugarcane bagasse hydrolysate in a zeolite fluidized bed reactor. Biotechnol Prog 21:1639–1643CrossRef
32.
go back to reference Shankar K, Kulkarni NS, Sajjanshetty R, Jayalakshmi SK, Sreeramulu K (2020) Co-production of xylitol and ethanol by the fermentation of the lignocellulosic hydrolysates of banana and water hyacinth leaves by individual yeast strains. Ind Crops Prod 155:112809CrossRef Shankar K, Kulkarni NS, Sajjanshetty R, Jayalakshmi SK, Sreeramulu K (2020) Co-production of xylitol and ethanol by the fermentation of the lignocellulosic hydrolysates of banana and water hyacinth leaves by individual yeast strains. Ind Crops Prod 155:112809CrossRef
33.
go back to reference Singh S, Kaur D, Yadav SK, Krishania M (2020) Process scale-up of an efficient acid-catalyzed steam pretreatment of rice straw for xylitol production by C. tropicalis MTCC 6192. Bioresour Technol 320:124422CrossRef Singh S, Kaur D, Yadav SK, Krishania M (2020) Process scale-up of an efficient acid-catalyzed steam pretreatment of rice straw for xylitol production by C. tropicalis MTCC 6192. Bioresour Technol 320:124422CrossRef
34.
go back to reference Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templaton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP). Technical Report NREL/TP-510–42618 Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templaton D, Crocker D (2012) Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP). Technical Report NREL/TP-510–42618
35.
go back to reference Soleimani M, Tabil L (2014) Evaluation of biocomposite-based supports for immobilized-cell xylitol production compared with a free-cell system. Biochem Eng J 82:166–173CrossRef Soleimani M, Tabil L (2014) Evaluation of biocomposite-based supports for immobilized-cell xylitol production compared with a free-cell system. Biochem Eng J 82:166–173CrossRef
36.
go back to reference Solarte-Toro JC, Romero-García JM, Martínez-Patiño JC, Ruiz-Ramos E, Castro-Galiano E, Cardona-Alzate CA (2019) Acid pretreatment of lignocellulosic biomass for energy vectors production: a review focused on operational conditions and techno-economic assessment for bioethanol production. Renew Sustain Energy Rev 107:587–601CrossRef Solarte-Toro JC, Romero-García JM, Martínez-Patiño JC, Ruiz-Ramos E, Castro-Galiano E, Cardona-Alzate CA (2019) Acid pretreatment of lignocellulosic biomass for energy vectors production: a review focused on operational conditions and techno-economic assessment for bioethanol production. Renew Sustain Energy Rev 107:587–601CrossRef
37.
go back to reference Tizazu BZ, Moholkar VS (2018) Kinetic and thermodynamic analysis of dilute acid hydrolysis of sugarcane bagasse. Bioresour Technol 250:197–203CrossRef Tizazu BZ, Moholkar VS (2018) Kinetic and thermodynamic analysis of dilute acid hydrolysis of sugarcane bagasse. Bioresour Technol 250:197–203CrossRef
38.
go back to reference Tizazu BZ, Roy K, Moholkar VS (2018) Ultrasonic enhancement of xylitol production from sugarcane bagasse using immobilized Candida tropicalis MTCC 184. Bioresour Technol 268:247–258CrossRef Tizazu BZ, Roy K, Moholkar VS (2018) Ultrasonic enhancement of xylitol production from sugarcane bagasse using immobilized Candida tropicalis MTCC 184. Bioresour Technol 268:247–258CrossRef
39.
go back to reference Ur-Rehman S, Mushtaq Z, Zahoor T, Jamil A, Murtaza MA (2015) Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Crit Rev Food Sci Nutr 55(11):1514–1528CrossRef Ur-Rehman S, Mushtaq Z, Zahoor T, Jamil A, Murtaza MA (2015) Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Crit Rev Food Sci Nutr 55(11):1514–1528CrossRef
40.
go back to reference Wang L, Jia F, Wu D, Wei Q, Liang Y, Hu Y, Li R, Yu G, Yuan Q, Wang J (2020) In-situ growth of graphene on carbon fibers for enhanced cell immobilization and xylitol fermentation. Appl Surf Sci 527:146793CrossRef Wang L, Jia F, Wu D, Wei Q, Liang Y, Hu Y, Li R, Yu G, Yuan Q, Wang J (2020) In-situ growth of graphene on carbon fibers for enhanced cell immobilization and xylitol fermentation. Appl Surf Sci 527:146793CrossRef
41.
go back to reference Wang L, Wu D, Tang P, Fan X, Yuan Q (2012) Xylitol production from corn cob hydrolysate using polyurethane foam with immobilized Candida tropicalis. Carbohydr Polym 90:1106–1113CrossRef Wang L, Wu D, Tang P, Fan X, Yuan Q (2012) Xylitol production from corn cob hydrolysate using polyurethane foam with immobilized Candida tropicalis. Carbohydr Polym 90:1106–1113CrossRef
42.
go back to reference Webb C, Dervakos GA (1996) Studies in viable cell immobilization. R.G. Landes Company, Georgetown, TX Webb C, Dervakos GA (1996) Studies in viable cell immobilization. R.G. Landes Company, Georgetown, TX
43.
go back to reference Yewale T, Panchwagh S, Rajagopalan S, Dhamole PB, Jain R (2016) Enhanced xylitol production using immobilized Candida tropicalis with non-detoxified corn cob hemicellulosic hydrolysate. 3 Biotech 6(1):75CrossRef Yewale T, Panchwagh S, Rajagopalan S, Dhamole PB, Jain R (2016) Enhanced xylitol production using immobilized Candida tropicalis with non-detoxified corn cob hemicellulosic hydrolysate. 3 Biotech 6(1):75CrossRef
44.
go back to reference Zahed O, Jouzani GS, Abbasalizadeh S, Khodaiyan F, Tabatabaei M (2015) Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. Folia Microbiol 61:179–189CrossRef Zahed O, Jouzani GS, Abbasalizadeh S, Khodaiyan F, Tabatabaei M (2015) Continuous co-production of ethanol and xylitol from rice straw hydrolysate in a membrane bioreactor. Folia Microbiol 61:179–189CrossRef
45.
go back to reference Zhang Q, Li Y, Xia L, Liu Z (2014) Enhanced xylitol production from statistically optimized fermentation of cotton stalk hydrolysate by immobilized Candida tropicalis. Chem Biochem Eng Q 28(1):87–93 Zhang Q, Li Y, Xia L, Liu Z (2014) Enhanced xylitol production from statistically optimized fermentation of cotton stalk hydrolysate by immobilized Candida tropicalis. Chem Biochem Eng Q 28(1):87–93
46.
go back to reference Zhang S, He H, Guan S, Cai B, Li Q, Rong S (2020) Bacterial cellulose-alginate composite beads as Yarrowia lipolytica cell carriers for lactone production. Molecules 25(4):928CrossRef Zhang S, He H, Guan S, Cai B, Li Q, Rong S (2020) Bacterial cellulose-alginate composite beads as Yarrowia lipolytica cell carriers for lactone production. Molecules 25(4):928CrossRef
47.
go back to reference Żywicka A, Junka A, Ciecholewska-Juśko D, Migdał P, Czajkowska J, Fijałkowski K (2020) Significant enhancement of citric acid production by Yarrowia lipolytica immobilized in bacterial cellulose-based carrier. J Biotechnol 321:13–22CrossRef Żywicka A, Junka A, Ciecholewska-Juśko D, Migdał P, Czajkowska J, Fijałkowski K (2020) Significant enhancement of citric acid production by Yarrowia lipolytica immobilized in bacterial cellulose-based carrier. J Biotechnol 321:13–22CrossRef
Metadata
Title
Xylitol production from rice straw hemicellulosic hydrolysate by Candida tropicalis GS18 immobilized on bacterial cellulose-sodium alginate matrix
Authors
Payal Guleria
Sundeep Kaur
Arushdeep Sidana
Sudesh Kumar Yadav
Publication date
02-07-2022
Publisher
Springer Berlin Heidelberg
Published in
Biomass Conversion and Biorefinery / Issue 8/2024
Print ISSN: 2190-6815
Electronic ISSN: 2190-6823
DOI
https://doi.org/10.1007/s13399-022-02986-0

Other articles of this Issue 8/2024

Biomass Conversion and Biorefinery 8/2024 Go to the issue