Skip to main content
Top
Published in: Journal of Materials Science 5/2020

21-10-2019 | Energy materials

Petal cell-derived MnO nanoparticle-incorporated biocarbon composite and its enhanced lithium storage performance

Authors: Yan Lin, Shupeng Zhao, Junchao Qian, Nan Xu, Xiao-Qin Liu, Lin-Bing Sun, Wanfei Li, Zhigang Chen, Zhengying Wu

Published in: Journal of Materials Science | Issue 5/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Manganese monoxide (MnO) has attracted much attention as anode materials in lithium ion (Li+) batteries (LIBs) due to its high theoretical capacity and being environmentally friendly. However, the low electrical conductivity, as well as structural collapse during the lithiation/delithiation process, limits its application. In this study, a novel MnO/C composite was feasibly synthesized by employing renewable petal cells as bioscaffolds. Mn(II) ions were firstly infiltrated into the confined space in the cellular walls of camellia petals, then transformed into MnO nanoparticles (average size of 22 nm) after calcination under nitrogen. At the same time, the camellia petal biotemplate was changed to the biocarbon in the composite, forming a C/MnO/C “layer–particle–layer” sandwich-like structure. Composition of the composite and chemical environment for the elements was further characterized by TG, FT-IR, Raman and XPS. When the composite is used as anode material in a half-cell LIB, the carbon layer can improve the conductivity of the electrode, and the unique sandwich-like structure can alleviate the volume expansion of MnO during the electrochemical cycling. As a result, the special MnO/C composite achieves a good specific capacity (445 mAh g−1 at 100 mA g−1 for more than 300 cycles) with excellent cycle stability. Quantitative analysis reveals that capacitance and diffusion mechanisms both account for Li+ storage.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Liu J, Guo S, Hu C et al (2018) Advanced nanocomposite electrodes for lithium-ion batteries. In: Guo Z, Chen Y, Lu N (eds) Multifunctional nanocomposites for energy and environmental applications, 1st edn. Wiley, Weinheim, pp 7–32 Liu J, Guo S, Hu C et al (2018) Advanced nanocomposite electrodes for lithium-ion batteries. In: Guo Z, Chen Y, Lu N (eds) Multifunctional nanocomposites for energy and environmental applications, 1st edn. Wiley, Weinheim, pp 7–32
2.
go back to reference Jiang H, Hu Y, Guo S et al (2014) Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 8:6038–6046 Jiang H, Hu Y, Guo S et al (2014) Rational design of MnO/carbon nanopeapods with internal void space for high-rate and long-life Li-ion batteries. ACS Nano 8:6038–6046
3.
go back to reference Yuan T, Jiang Y, Sun W et al (2016) Ever-increasing pseudocapacitance in rGO–MnO–rGO sandwich nanostructures for ultrahigh-rate lithium storage. Adv Funct Mater 26:2198–2206 Yuan T, Jiang Y, Sun W et al (2016) Ever-increasing pseudocapacitance in rGO–MnO–rGO sandwich nanostructures for ultrahigh-rate lithium storage. Adv Funct Mater 26:2198–2206
4.
go back to reference Zhang C, Guo C, Wei Y et al (2016) A simple synthesis of hollow Mn2O3 core–shell microspheres and their application in lithium ion batteries. Phys Chem Chem Phys 18:4739–4744 Zhang C, Guo C, Wei Y et al (2016) A simple synthesis of hollow Mn2O3 core–shell microspheres and their application in lithium ion batteries. Phys Chem Chem Phys 18:4739–4744
5.
go back to reference Fan X, Li S, Lu L (2016) Porous micrometer-sized MnO cubes as anode of lithium ion battery. Electrochim Acta 200:152–160 Fan X, Li S, Lu L (2016) Porous micrometer-sized MnO cubes as anode of lithium ion battery. Electrochim Acta 200:152–160
6.
go back to reference Zhang Y, Yan Y, Wang X et al (2014) Facile synthesis of porous Mn2O3 nanoplates and their electrochemical behavior as anode materials for lithium ion batteries. Chem Eur J 20:6126–6130 Zhang Y, Yan Y, Wang X et al (2014) Facile synthesis of porous Mn2O3 nanoplates and their electrochemical behavior as anode materials for lithium ion batteries. Chem Eur J 20:6126–6130
7.
go back to reference Li X, Li D, Wei Z et al (2014) Interconnected MnO2 nanoflakes supported by 3D nanostructured stainless steel plates for lithium ion battery anodes. Electrochim Acta 121:415–420 Li X, Li D, Wei Z et al (2014) Interconnected MnO2 nanoflakes supported by 3D nanostructured stainless steel plates for lithium ion battery anodes. Electrochim Acta 121:415–420
8.
go back to reference Wang J, Du N, Wu H et al (2013) Order-aligned Mn3O4 nanostructures as super high-rate electrodes for rechargeable lithium-ion batteries. J Power Sources 222:32–37 Wang J, Du N, Wu H et al (2013) Order-aligned Mn3O4 nanostructures as super high-rate electrodes for rechargeable lithium-ion batteries. J Power Sources 222:32–37
9.
go back to reference Qiao Y, Sun Q, Xi J et al (2016) A modified solvothermal synthesis of porous Mn3O4 for supercapacitor with excellent rate capability and long cycle life. J Alloys Compd 660:416–422 Qiao Y, Sun Q, Xi J et al (2016) A modified solvothermal synthesis of porous Mn3O4 for supercapacitor with excellent rate capability and long cycle life. J Alloys Compd 660:416–422
10.
go back to reference Yang Y, Huang X, Xiang Y et al (2019) Mn3O4 with different morphologies tuned through one-step electrochemical method for high-performance lithium-ion batteries anode. J Alloys Compd 771:335–342 Yang Y, Huang X, Xiang Y et al (2019) Mn3O4 with different morphologies tuned through one-step electrochemical method for high-performance lithium-ion batteries anode. J Alloys Compd 771:335–342
11.
go back to reference Chu Y, Guo L, Xi B et al (2018) Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from Mn-organic clusters for efficient lithium storage. Adv Mater 30:1–12 Chu Y, Guo L, Xi B et al (2018) Embedding MnO@Mn3O4 nanoparticles in an N-doped-carbon framework derived from Mn-organic clusters for efficient lithium storage. Adv Mater 30:1–12
12.
go back to reference Wang H-G, Zhou Y, Shen Y et al (2015) Fabrication, formation mechanism and the application in lithium-ion battery of porous Fe2O3 nanotubes via single-spinneret electrospinning. Electrochim Acta 158:105–112 Wang H-G, Zhou Y, Shen Y et al (2015) Fabrication, formation mechanism and the application in lithium-ion battery of porous Fe2O3 nanotubes via single-spinneret electrospinning. Electrochim Acta 158:105–112
13.
go back to reference Varghese B, Reddy MV, Yanwu Z et al (2008) Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem Mater 20:3360–3367 Varghese B, Reddy MV, Yanwu Z et al (2008) Fabrication of NiO nanowall electrodes for high performance lithium ion battery. Chem Mater 20:3360–3367
14.
go back to reference Wang X, Wu X-L, Guo Y-G et al (2010) Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv Funct Mater 20:1680–1686 Wang X, Wu X-L, Guo Y-G et al (2010) Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv Funct Mater 20:1680–1686
15.
go back to reference Wu F, Zhang S, Xi B et al (2018) Unusual formation of CoO@C “dandelions” derived from 2D Kagóme MOLs for efficient lithium storage. Adv Energy Mater 8:1–8 Wu F, Zhang S, Xi B et al (2018) Unusual formation of CoO@C “dandelions” derived from 2D Kagóme MOLs for efficient lithium storage. Adv Energy Mater 8:1–8
16.
go back to reference Yang W, Wang J, Ma W et al (2016) Free-standing CuO nanoflake arrays coated Cu foam for advanced lithium ion battery anodes. J Power Sources 333:88–98 Yang W, Wang J, Ma W et al (2016) Free-standing CuO nanoflake arrays coated Cu foam for advanced lithium ion battery anodes. J Power Sources 333:88–98
17.
go back to reference Palmieri A, Yazdani S, Kashfi-Sadabad R et al (2018) Cobalt doping as a pathway to stabilize the solid-state conversion chemistry of manganese oxide anodes in Li-ion batteries. J Phys Chem C 122:7120–7127 Palmieri A, Yazdani S, Kashfi-Sadabad R et al (2018) Cobalt doping as a pathway to stabilize the solid-state conversion chemistry of manganese oxide anodes in Li-ion batteries. J Phys Chem C 122:7120–7127
18.
go back to reference Zeng S, Zhao R, Li A et al (2019) MnO/carbon fibers prepared by an electrospinning method and their properties used as anodes for lithium ion batteries. Appl Surf Sci 463:211–216 Zeng S, Zhao R, Li A et al (2019) MnO/carbon fibers prepared by an electrospinning method and their properties used as anodes for lithium ion batteries. Appl Surf Sci 463:211–216
19.
go back to reference Hu Y, Wu K, Zhang F et al (2018) Hierarchical MnO@C hollow nanospheres for advanced lithium-ion battery anodes. ACS Appl Nano Mater 2:429–439 Hu Y, Wu K, Zhang F et al (2018) Hierarchical MnO@C hollow nanospheres for advanced lithium-ion battery anodes. ACS Appl Nano Mater 2:429–439
20.
go back to reference Zheng F, Yin Z, Xia H et al (2017) Porous MnO@C nanocomposite derived from metal–organic frameworks as anode materials for long-life lithium-ion batteries. Chem Eng J 327:474–480 Zheng F, Yin Z, Xia H et al (2017) Porous MnO@C nanocomposite derived from metal–organic frameworks as anode materials for long-life lithium-ion batteries. Chem Eng J 327:474–480
21.
go back to reference Sun B, Chen Z, Kim H-S et al (2011) MnO/C core–shell nanorods as high capacity anode materials for lithium-ion batteries. J Power Sources 196:3346–3349 Sun B, Chen Z, Kim H-S et al (2011) MnO/C core–shell nanorods as high capacity anode materials for lithium-ion batteries. J Power Sources 196:3346–3349
22.
go back to reference Li X, Xiong S, Li J et al (2013) MnO@carbon core–shell nanowires as stable high-performance anodes for lithium-ion batteries. Chem Eur J 19:11310–11319 Li X, Xiong S, Li J et al (2013) MnO@carbon core–shell nanowires as stable high-performance anodes for lithium-ion batteries. Chem Eur J 19:11310–11319
23.
go back to reference Liu C, Sun H, Qian J et al (2017) Biotemplating synthesis and photocatalytic activities of N-doped CeO2 microcapsule tailored by hemerocallis pollen. Adv Powder Technol 28:2741–2746 Liu C, Sun H, Qian J et al (2017) Biotemplating synthesis and photocatalytic activities of N-doped CeO2 microcapsule tailored by hemerocallis pollen. Adv Powder Technol 28:2741–2746
24.
go back to reference Yan D, Zhang Y, Zhang X et al (2017) Co3O4 microtubules derived from a biotemplated method for improved lithium storage performance. Ceram Int 43:9235–9240 Yan D, Zhang Y, Zhang X et al (2017) Co3O4 microtubules derived from a biotemplated method for improved lithium storage performance. Ceram Int 43:9235–9240
25.
go back to reference Wang C, Chen F, Tang Y et al (2018) Advanced visible-light photocatalytic property of biologically structured carbon/ceria hybrid multilayer membranes prepared by bamboo leaves. Ceram Int 44:5834–5841 Wang C, Chen F, Tang Y et al (2018) Advanced visible-light photocatalytic property of biologically structured carbon/ceria hybrid multilayer membranes prepared by bamboo leaves. Ceram Int 44:5834–5841
26.
go back to reference Chen A, Qian J, Chen Y et al (2013) Enhanced sunlight photocatalytic activity of porous TiO2 hierarchical nanosheets derived from petal template. Powder Technol 249:71–76 Chen A, Qian J, Chen Y et al (2013) Enhanced sunlight photocatalytic activity of porous TiO2 hierarchical nanosheets derived from petal template. Powder Technol 249:71–76
27.
go back to reference Cui R, Lin Y, Qian J et al (2017) Two-dimensional porous SiO2 nanostructures derived from renewable petal cells with enhanced adsorption efficiency for removal of hazardous dye. ACS Sustain Chem Eng 5:3478–3487 Cui R, Lin Y, Qian J et al (2017) Two-dimensional porous SiO2 nanostructures derived from renewable petal cells with enhanced adsorption efficiency for removal of hazardous dye. ACS Sustain Chem Eng 5:3478–3487
28.
go back to reference Cao X, Wu J, Jin C et al (2015) MnCo2O4 Anchored on P-doped hierarchical porous carbon as an electrocatalyst for high-performance rechargeable Li–O2 batteries. ACS Catal 5:4890–4896 Cao X, Wu J, Jin C et al (2015) MnCo2O4 Anchored on P-doped hierarchical porous carbon as an electrocatalyst for high-performance rechargeable Li–O2 batteries. ACS Catal 5:4890–4896
29.
go back to reference Luo Y, Jin C, Wang Z et al (2017) A high-performance oxygen electrode for Li–O2 batteries: Mo2C nanoparticles grown on carbon fibers. J Mater Chem A 5:5690–5695 Luo Y, Jin C, Wang Z et al (2017) A high-performance oxygen electrode for Li–O2 batteries: Mo2C nanoparticles grown on carbon fibers. J Mater Chem A 5:5690–5695
30.
go back to reference Li X, Li D, Qiao L et al (2012) Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes. J Mater Chem 22:9189–9194 Li X, Li D, Qiao L et al (2012) Interconnected porous MnO nanoflakes for high-performance lithium ion battery anodes. J Mater Chem 22:9189–9194
31.
go back to reference Luo W, Hu X, Sun Y et al (2013) Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties. ACS Appl Mater Interfaces 5:1997–2003 Luo W, Hu X, Sun Y et al (2013) Controlled synthesis of mesoporous MnO/C networks by microwave irradiation and their enhanced lithium-storage properties. ACS Appl Mater Interfaces 5:1997–2003
32.
go back to reference Sun Y, Hu X, Luo W et al (2013) Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater 23:2436–2444 Sun Y, Hu X, Luo W et al (2013) Reconstruction of conformal nanoscale MnO on graphene as a high-capacity and long-life anode material for lithium ion batteries. Adv Funct Mater 23:2436–2444
33.
go back to reference Zhong K, Zhang B, Luo S et al (2011) Investigation on porous MnO microsphere anode for lithium ion batteries. J Power Sources 196:6802–6808 Zhong K, Zhang B, Luo S et al (2011) Investigation on porous MnO microsphere anode for lithium ion batteries. J Power Sources 196:6802–6808
34.
go back to reference Diefallah E-HM (1992) Kinetic analysis of thermal decomposition reactions. Part VI. Thermal decomposition of manganese(II) acetate tetrahydrate. Thermochim Acta 202:1–16 Diefallah E-HM (1992) Kinetic analysis of thermal decomposition reactions. Part VI. Thermal decomposition of manganese(II) acetate tetrahydrate. Thermochim Acta 202:1–16
35.
go back to reference Newkirk AE (1971) Thermogravimetry in self-generated atmospheres: a decade of practice and new results. Thermochim Acta 2:1–23 Newkirk AE (1971) Thermogravimetry in self-generated atmospheres: a decade of practice and new results. Thermochim Acta 2:1–23
36.
go back to reference Wang M, Cheng L, Li Q et al (2014) Two-dimensional nanosheets associated with one-dimensional single-crystalline nanorods self-assembled into three-dimensional flower-like Mn3O4 hierarchical architectures. Phys Chem Chem Phys 16:21742–21746 Wang M, Cheng L, Li Q et al (2014) Two-dimensional nanosheets associated with one-dimensional single-crystalline nanorods self-assembled into three-dimensional flower-like Mn3O4 hierarchical architectures. Phys Chem Chem Phys 16:21742–21746
37.
go back to reference Hu Z, Xiao X, Huang L et al (2015) 2D vanadium doped manganese dioxides nanosheets for pseudocapacitive energy storage. Nanoscale 7:16094–16099 Hu Z, Xiao X, Huang L et al (2015) 2D vanadium doped manganese dioxides nanosheets for pseudocapacitive energy storage. Nanoscale 7:16094–16099
38.
go back to reference Bhagwan J, Sahoo A, Yadav KL et al (2015) Porous, one dimensional and high aspect ratio Mn3O4 nanofibers: fabrication and optimization for enhanced supercapacitive properties. Electrochim Acta 174:992–1001 Bhagwan J, Sahoo A, Yadav KL et al (2015) Porous, one dimensional and high aspect ratio Mn3O4 nanofibers: fabrication and optimization for enhanced supercapacitive properties. Electrochim Acta 174:992–1001
39.
go back to reference Ma L, Zhou X, Xu L et al (2015) Chitosan-assisted fabrication of ultrathin MoS2/graphene heterostructures for Li-ion battery with excellent electrochemical performance. Electrochim Acta 167:39–47 Ma L, Zhou X, Xu L et al (2015) Chitosan-assisted fabrication of ultrathin MoS2/graphene heterostructures for Li-ion battery with excellent electrochemical performance. Electrochim Acta 167:39–47
40.
go back to reference Liu Z, Xing Y, Fang S et al (2015) Low temperature self-assembled synthesis of hexagonal plate-shape Mn3O4 3D hierarchical architectures and their application in electrochemical capacitors. RSC Adv 5:54867–54872 Liu Z, Xing Y, Fang S et al (2015) Low temperature self-assembled synthesis of hexagonal plate-shape Mn3O4 3D hierarchical architectures and their application in electrochemical capacitors. RSC Adv 5:54867–54872
41.
go back to reference Li Z, An Y, Hu Z et al (2016) Preparation of a two-dimensional flexible MnO2/graphene thin film and its application in a supercapacitor. J Mater Chem A 4:10618–10626 Li Z, An Y, Hu Z et al (2016) Preparation of a two-dimensional flexible MnO2/graphene thin film and its application in a supercapacitor. J Mater Chem A 4:10618–10626
42.
go back to reference Xie Y, Yu Y, Gong X et al (2015) Effect of the crystal plane figure on the catalytic performance of MnO2 for the total oxidation of propane. CrystEngComm 17:3005–3014 Xie Y, Yu Y, Gong X et al (2015) Effect of the crystal plane figure on the catalytic performance of MnO2 for the total oxidation of propane. CrystEngComm 17:3005–3014
43.
go back to reference Lian P, Zhu X, Liang S et al (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 55:3909–3914 Lian P, Zhu X, Liang S et al (2010) Large reversible capacity of high quality graphene sheets as an anode material for lithium-ion batteries. Electrochim Acta 55:3909–3914
44.
go back to reference Ramírez A, Hillebrand P, Stellmach D et al (2014) Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J Phys Chem C 118:14073–14081 Ramírez A, Hillebrand P, Stellmach D et al (2014) Evaluation of MnOx, Mn2O3, and Mn3O4 electrodeposited films for the oxygen evolution reaction of water. J Phys Chem C 118:14073–14081
45.
go back to reference Zhang K, Han P, Gu L et al (2012) Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl Mater Interfaces 4:658–664 Zhang K, Han P, Gu L et al (2012) Synthesis of nitrogen-doped MnO/graphene nanosheets hybrid material for lithium ion batteries. ACS Appl Mater Interfaces 4:658–664
46.
go back to reference Peng H-J, Hao G-X, Chu Z-H et al (2017) Mesoporous Mn3O4/C microspheres fabricated from MOF template as advanced lithium-ion battery anode. Cryst Growth Des 17:5881–5886 Peng H-J, Hao G-X, Chu Z-H et al (2017) Mesoporous Mn3O4/C microspheres fabricated from MOF template as advanced lithium-ion battery anode. Cryst Growth Des 17:5881–5886
47.
go back to reference Castro VD, Polzonetti G (1989) XPS study of MnO oxidation. J Electron Spectrosc Relat Phenom 48:117–123 Castro VD, Polzonetti G (1989) XPS study of MnO oxidation. J Electron Spectrosc Relat Phenom 48:117–123
48.
go back to reference Yan D, Yan P, Cheng S et al (2009) Fabrication, in-depth characterization, and formation mechanism of crystalline porous birnessite MnO2 film with amorphous bottom layers by hydrothermal method. Cryst Growth Des 9:218–222 Yan D, Yan P, Cheng S et al (2009) Fabrication, in-depth characterization, and formation mechanism of crystalline porous birnessite MnO2 film with amorphous bottom layers by hydrothermal method. Cryst Growth Des 9:218–222
49.
go back to reference Yao W, Zhao M, Dai Y et al (2017) Micro-/mesoporous zinc-manganese oxide/graphene hybrids with high specific surface area: a high-capacity, superior-rate, and ultralong-life anode for lithium storage. ChemElectroChem 4:230–235 Yao W, Zhao M, Dai Y et al (2017) Micro-/mesoporous zinc-manganese oxide/graphene hybrids with high specific surface area: a high-capacity, superior-rate, and ultralong-life anode for lithium storage. ChemElectroChem 4:230–235
50.
go back to reference Canal-Rodríguez M, Arenillas A, Menéndez JA et al (2018) Carbon xerogels graphitized by microwave heating as anode materials in lithium-ion batteries. Carbon 137:384–394 Canal-Rodríguez M, Arenillas A, Menéndez JA et al (2018) Carbon xerogels graphitized by microwave heating as anode materials in lithium-ion batteries. Carbon 137:384–394
51.
go back to reference Qu X, Huang G, Xing B et al (2019) Core–shell carbon composite material as anode materials for lithium-ion batteries. J Alloys Compd 772:814–822 Qu X, Huang G, Xing B et al (2019) Core–shell carbon composite material as anode materials for lithium-ion batteries. J Alloys Compd 772:814–822
52.
go back to reference Cui Z, Guo X, Li H (2013) High performance MnO thin-film anodes grown by radio-frequency sputtering for lithium ion batteries. J Power Sources 244:731–735 Cui Z, Guo X, Li H (2013) High performance MnO thin-film anodes grown by radio-frequency sputtering for lithium ion batteries. J Power Sources 244:731–735
53.
go back to reference Han C-G, Zhu C, Aoki Y et al (2017) MnO/N–C anode materials for lithium-ion batteries prepared by cotton-templated combustion synthesis. Green Energ Environ 2:377–386 Han C-G, Zhu C, Aoki Y et al (2017) MnO/N–C anode materials for lithium-ion batteries prepared by cotton-templated combustion synthesis. Green Energ Environ 2:377–386
54.
go back to reference Liu B, Hu X, Xu H et al (2014) Encapsulation of MnO nanocrystals in electrospun carbon nanofibers as high-performance anode materials for lithium-ion batteries. Sci Rep 4:4229–4234 Liu B, Hu X, Xu H et al (2014) Encapsulation of MnO nanocrystals in electrospun carbon nanofibers as high-performance anode materials for lithium-ion batteries. Sci Rep 4:4229–4234
55.
go back to reference Xia Y, Xiao Z, Dou X et al (2013) Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano 7:7083–7092 Xia Y, Xiao Z, Dou X et al (2013) Green and facile fabrication of hollow porous MnO/C microspheres from microalgaes for lithium-ion batteries. ACS Nano 7:7083–7092
56.
go back to reference Wang J, Liu W, Chen J et al (2016) Biotemplated MnO/C microtubes from spirogyra with improved electrochemical performance for lithium-ion batterys. Electrochim Acta 188:210–217 Wang J, Liu W, Chen J et al (2016) Biotemplated MnO/C microtubes from spirogyra with improved electrochemical performance for lithium-ion batterys. Electrochim Acta 188:210–217
57.
go back to reference Sun D, Tang Y, Ye D et al (2017) Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high performance Li ion batteries. ACS Appl Mater Interfaces 9:5254–5262 Sun D, Tang Y, Ye D et al (2017) Tuning the morphologies of MnO/C hybrids by space constraint assembly of Mn-MOFs for high performance Li ion batteries. ACS Appl Mater Interfaces 9:5254–5262
58.
go back to reference Zhu G, Wang L, Lin H et al (2018) Walnut-like multicore–shell MnO encapsulated nitrogen-rich carbon nanocapsules as anode material for long-cycling and soft-packed lithium-ion batteries. Adv Funct Mater 28:1–7 Zhu G, Wang L, Lin H et al (2018) Walnut-like multicore–shell MnO encapsulated nitrogen-rich carbon nanocapsules as anode material for long-cycling and soft-packed lithium-ion batteries. Adv Funct Mater 28:1–7
59.
go back to reference Chen L-F, Ma S-X, Lu S et al (2016) Biotemplated synthesis of three-dimensional porous MnO/C–N nanocomposites from renewable rapeseed pollen: an anode material for lithium-ion batteries. Nano Res 10:1–11 Chen L-F, Ma S-X, Lu S et al (2016) Biotemplated synthesis of three-dimensional porous MnO/C–N nanocomposites from renewable rapeseed pollen: an anode material for lithium-ion batteries. Nano Res 10:1–11
60.
go back to reference Qiu S, Wang X, Lu G et al (2014) Facile synthesis of MnO and nitrogen-doped carbon nanocomposites as anode material for lithium ion battery. Mater Lett 136:289–291 Qiu S, Wang X, Lu G et al (2014) Facile synthesis of MnO and nitrogen-doped carbon nanocomposites as anode material for lithium ion battery. Mater Lett 136:289–291
61.
go back to reference Long B, Zhou X, Tang J et al (2018) Facile synthesis of graphene encapsulated MnO nanorods as anode material for Li-ion batteries. Chem Phys Lett 710:129–132 Long B, Zhou X, Tang J et al (2018) Facile synthesis of graphene encapsulated MnO nanorods as anode material for Li-ion batteries. Chem Phys Lett 710:129–132
62.
go back to reference Li F, Ma J, Ren H et al (2017) Fabrication of MnO nanowires implanted in graphene as an advanced anode material for sodium-ion batteries. Mater Lett 206:132–135 Li F, Ma J, Ren H et al (2017) Fabrication of MnO nanowires implanted in graphene as an advanced anode material for sodium-ion batteries. Mater Lett 206:132–135
64.
go back to reference Wang Y, Wu H, Liu Z et al (2019) Tailoring sandwich-like CNT@MnO@N-doped carbon hetero-nanotubes as advanced anodes for boosting lithium storage. Electrochim Acta 304:158–167 Wang Y, Wu H, Liu Z et al (2019) Tailoring sandwich-like CNT@MnO@N-doped carbon hetero-nanotubes as advanced anodes for boosting lithium storage. Electrochim Acta 304:158–167
65.
go back to reference Wang J, Polleux J, Lim J et al (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931 Wang J, Polleux J, Lim J et al (2007) Pseudocapacitive contributions to electrochemical energy storage in TiO2 (anatase) nanoparticles. J Phys Chem C 111:14925–14931
Metadata
Title
Petal cell-derived MnO nanoparticle-incorporated biocarbon composite and its enhanced lithium storage performance
Authors
Yan Lin
Shupeng Zhao
Junchao Qian
Nan Xu
Xiao-Qin Liu
Lin-Bing Sun
Wanfei Li
Zhigang Chen
Zhengying Wu
Publication date
21-10-2019
Publisher
Springer US
Published in
Journal of Materials Science / Issue 5/2020
Print ISSN: 0022-2461
Electronic ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-04085-4

Other articles of this Issue 5/2020

Journal of Materials Science 5/2020 Go to the issue

Premium Partners