Skip to main content
Top
Published in: Rare Metals 2/2020

19-08-2019

Phase-field–lattice Boltzmann simulation of dendrite growth under natural convection in multicomponent superalloy solidification

Authors: Cong Yang, Qing-Yan Xu, Bai-Cheng Liu

Published in: Rare Metals | Issue 2/2020

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The thermosolutal convection can alter segregation pattern, change dendrite morphology and even cause freckles formation in alloy solidification. In this work, the multiphase-field model was coupled with lattice Boltzmann method to simulate the dendrite growth under melt convection in superalloy solidification. In the isothermal solidification simulations, zero and normal gravitational accelerations were applied to investigate the effects of gravity on the dendrite morphology and the magnitude of melt flow. The solute distribution of each alloy component along with the dendrite tip velocity during solidification was obtained, and the natural convection has been confirmed to affect the microsegregation pattern and the dendrite growth velocity. In the directional solidification simulations, two typical temperature gradients were applied, and the dendrite morphology and fluid velocity in the mushy zone during solidification were analyzed. It is found that the freckles will form when the average fluid velocity in the mushy zone exceeds the withdraw velocity.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
[1]
go back to reference Liu G, Liu L, Han ZH, Zhang GJ, Zhang J. Solidification behavior of Re-and Ru-containing Ni-based single-crystal superalloys with thermal and metallographic analysis. Rare Met. 2017;36(10):792.CrossRef Liu G, Liu L, Han ZH, Zhang GJ, Zhang J. Solidification behavior of Re-and Ru-containing Ni-based single-crystal superalloys with thermal and metallographic analysis. Rare Met. 2017;36(10):792.CrossRef
[2]
go back to reference Yue XD, Li JR, Wang XG. The microstructure of a single crystal superalloy after different aging heat treatments. Rare Met. 2018;37(3):210.CrossRef Yue XD, Li JR, Wang XG. The microstructure of a single crystal superalloy after different aging heat treatments. Rare Met. 2018;37(3):210.CrossRef
[3]
go back to reference Wang RN, Xu QY, Liu BC. A model for simulation of recrystallization microstructure in single-crystal superalloy. Rare Met. 2018;37(12):1027.CrossRef Wang RN, Xu QY, Liu BC. A model for simulation of recrystallization microstructure in single-crystal superalloy. Rare Met. 2018;37(12):1027.CrossRef
[4]
go back to reference Bogno A, Nguyen-Thi H, Buffet A, Reinhart G, Billia B, Mangelinck-Noël N, Bergeon N, Baruchel J, Schenk T. Analysis by synchrotron X-ray radiography of convection effects on the dynamic evolution of the solid–liquid interface and on solute distribution during the initial transient of solidification. Acta Mater. 2011;59(11):4356.CrossRef Bogno A, Nguyen-Thi H, Buffet A, Reinhart G, Billia B, Mangelinck-Noël N, Bergeon N, Baruchel J, Schenk T. Analysis by synchrotron X-ray radiography of convection effects on the dynamic evolution of the solid–liquid interface and on solute distribution during the initial transient of solidification. Acta Mater. 2011;59(11):4356.CrossRef
[5]
go back to reference Spinelli JE, Rosa DM, Ferreira IL, Garcia A. Influence of melt convection on dendritic spacings of downward unsteady-state directionally solidified Al–Cu alloys. Mater Sci Eng A. 2004;383(2):271.CrossRef Spinelli JE, Rosa DM, Ferreira IL, Garcia A. Influence of melt convection on dendritic spacings of downward unsteady-state directionally solidified Al–Cu alloys. Mater Sci Eng A. 2004;383(2):271.CrossRef
[6]
go back to reference Pollock TM, Murphy WH. The breakdown of single-crystal solidification in high refractory nickel-base alloys. Metall Mater Trans A. 1996;27(4):1081.CrossRef Pollock TM, Murphy WH. The breakdown of single-crystal solidification in high refractory nickel-base alloys. Metall Mater Trans A. 1996;27(4):1081.CrossRef
[8]
go back to reference Zhang W, Liu L. Solidification microstructure of directionally solidified superalloy under high temperature gradient. Rare Met. 2012;31(6):541.CrossRef Zhang W, Liu L. Solidification microstructure of directionally solidified superalloy under high temperature gradient. Rare Met. 2012;31(6):541.CrossRef
[9]
go back to reference Shevchenko N, Boden S, Gerbeth G, Eckert S. Chimney formation in solidifying Ga-25wt pct in alloys under the influence of thermosolutal melt convection. Metall Mater Trans A. 2013;44(8):3897.CrossRef Shevchenko N, Boden S, Gerbeth G, Eckert S. Chimney formation in solidifying Ga-25wt pct in alloys under the influence of thermosolutal melt convection. Metall Mater Trans A. 2013;44(8):3897.CrossRef
[10]
go back to reference Clarke AJ, Tourret D, Song Y, Imhoff SD, Gibbs PJ, Gibbs JW, Fezzaa K, Karma A. Microstructure selection in thin-sample directional solidification of an Al–Cu alloy: in situ X-ray imaging and phase-field simulations. Acta Mater. 2017;129:203.CrossRef Clarke AJ, Tourret D, Song Y, Imhoff SD, Gibbs PJ, Gibbs JW, Fezzaa K, Karma A. Microstructure selection in thin-sample directional solidification of an Al–Cu alloy: in situ X-ray imaging and phase-field simulations. Acta Mater. 2017;129:203.CrossRef
[11]
go back to reference Eiken J, Böttger B, Steinbach I. Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. Phys Rev E. 2006;73(6):066122.CrossRef Eiken J, Böttger B, Steinbach I. Multiphase-field approach for multicomponent alloys with extrapolation scheme for numerical application. Phys Rev E. 2006;73(6):066122.CrossRef
[12]
go back to reference Steinbach I, Böttger B, Eiken J, Warnken N, Fries S. CALPHAD and phase-field modeling: a successful liaison. J Phase Equilib Diffus. 2007;28(1):101.CrossRef Steinbach I, Böttger B, Eiken J, Warnken N, Fries S. CALPHAD and phase-field modeling: a successful liaison. J Phase Equilib Diffus. 2007;28(1):101.CrossRef
[13]
go back to reference Kim SG. A phase-field model with antitrapping current for multicomponent alloys with arbitrary thermodynamic properties. Acta Mater. 2007;55(13):4391.CrossRef Kim SG. A phase-field model with antitrapping current for multicomponent alloys with arbitrary thermodynamic properties. Acta Mater. 2007;55(13):4391.CrossRef
[14]
go back to reference Warnken N, Ma D, Drevermann A, Reed RC, Fries SG, Steinbach I. Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys. Acta Mater. 2009;57(19):5862.CrossRef Warnken N, Ma D, Drevermann A, Reed RC, Fries SG, Steinbach I. Phase-field modelling of as-cast microstructure evolution in nickel-based superalloys. Acta Mater. 2009;57(19):5862.CrossRef
[15]
go back to reference Yang C, Xu QY, Liu BC. Primary dendrite spacing selection during directional solidification of multicomponent nickel-based superalloy: multiphase-field study. J Mater Sci. 2018;53(13):9755.CrossRef Yang C, Xu QY, Liu BC. Primary dendrite spacing selection during directional solidification of multicomponent nickel-based superalloy: multiphase-field study. J Mater Sci. 2018;53(13):9755.CrossRef
[16]
go back to reference Sun DK, Zhu MF, Pan SY, Yang CR, Raabe D. Lattice Boltzmann modeling of dendritic growth in forced and natural convection. Comput Math Appl. 2011;61(12):3585.CrossRef Sun DK, Zhu MF, Pan SY, Yang CR, Raabe D. Lattice Boltzmann modeling of dendritic growth in forced and natural convection. Comput Math Appl. 2011;61(12):3585.CrossRef
[17]
go back to reference Sun DK, Zhu MF, Wang J, Sun BD. Lattice Boltzmann modeling of bubble formation and dendritic growth in solidification of binary alloys. Int J Heat Mass Transf. 2016;94:474.CrossRef Sun DK, Zhu MF, Wang J, Sun BD. Lattice Boltzmann modeling of bubble formation and dendritic growth in solidification of binary alloys. Int J Heat Mass Transf. 2016;94:474.CrossRef
[18]
go back to reference Sun DK, Pan SY, Han QY, Sun BD. Numerical simulation of dendritic growth in directional solidification of binary alloys using a lattice Boltzmann scheme. Int J Heat Mass Transf. 2016;103:821.CrossRef Sun DK, Pan SY, Han QY, Sun BD. Numerical simulation of dendritic growth in directional solidification of binary alloys using a lattice Boltzmann scheme. Int J Heat Mass Transf. 2016;103:821.CrossRef
[19]
go back to reference Rojas R, Takaki T, Ohno M. A phase-field-lattice Boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection. J Comput Phys. 2015;298:29.CrossRef Rojas R, Takaki T, Ohno M. A phase-field-lattice Boltzmann method for modeling motion and growth of a dendrite for binary alloy solidification in the presence of melt convection. J Comput Phys. 2015;298:29.CrossRef
[20]
go back to reference Takaki T, Rojas R, Sakane S, Ohno M, Shibuta Y, Shimokawabe T, Aoki T. Phase-field-lattice Boltzmann studies for dendritic growth with natural convection. J Cryst Growth. 2017;474:146.CrossRef Takaki T, Rojas R, Sakane S, Ohno M, Shibuta Y, Shimokawabe T, Aoki T. Phase-field-lattice Boltzmann studies for dendritic growth with natural convection. J Cryst Growth. 2017;474:146.CrossRef
[21]
go back to reference Yang C, Xu QY, Liu BC. GPU-accelerated three-dimensional phase-field simulation of dendrite growth in a nickel-based superalloy. Comput Mater Sci. 2017;136:133.CrossRef Yang C, Xu QY, Liu BC. GPU-accelerated three-dimensional phase-field simulation of dendrite growth in a nickel-based superalloy. Comput Mater Sci. 2017;136:133.CrossRef
[22]
go back to reference Qian YH, Humières DD, Lallemand P. Lattice BGK models for Navier–Stokes equation. Europhys Lett. 1992;17(6):479.CrossRef Qian YH, Humières DD, Lallemand P. Lattice BGK models for Navier–Stokes equation. Europhys Lett. 1992;17(6):479.CrossRef
[23]
go back to reference Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen EM. The Lattice Boltzmann Method. Basel: Springer; 2017. 61.CrossRef Krüger T, Kusumaatmaja H, Kuzmin A, Shardt O, Silva G, Viggen EM. The Lattice Boltzmann Method. Basel: Springer; 2017. 61.CrossRef
[24]
go back to reference Beckermann C, Diepers HJ, Steinbach I, Karma A, Tong X. Modeling melt convection in phase-field simulations of solidification. J Comput Phys. 1999;154(2):468.CrossRef Beckermann C, Diepers HJ, Steinbach I, Karma A, Tong X. Modeling melt convection in phase-field simulations of solidification. J Comput Phys. 1999;154(2):468.CrossRef
[25]
go back to reference Seo S, Lee J, Yoo Y, Jo C, Miyahara H, Ogi K. A comparative study of the γ/γ′ eutectic evolution during the solidification of Ni-base superalloys. Metall Mater Trans A. 2011;42(10):3150.CrossRef Seo S, Lee J, Yoo Y, Jo C, Miyahara H, Ogi K. A comparative study of the γ/γ′ eutectic evolution during the solidification of Ni-base superalloys. Metall Mater Trans A. 2011;42(10):3150.CrossRef
[26]
go back to reference Schneider MC, Gu JP, Beckermann C, Boettinger WJ, Kattner UR. Modeling of micro- and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification. Metall Mater Trans A. 1997;28(7):1517.CrossRef Schneider MC, Gu JP, Beckermann C, Boettinger WJ, Kattner UR. Modeling of micro- and macrosegregation and freckle formation in single-crystal nickel-base superalloy directional solidification. Metall Mater Trans A. 1997;28(7):1517.CrossRef
[27]
go back to reference Higuchi K, Fecht HJ, Wunderlich RK. Surface tension and viscosity of the Ni-based superalloy CMSX-4 measured by the oscillating drop method in parabolic flight experiments. Adv Eng Mater. 2010;9(5):349.CrossRef Higuchi K, Fecht HJ, Wunderlich RK. Surface tension and viscosity of the Ni-based superalloy CMSX-4 measured by the oscillating drop method in parabolic flight experiments. Adv Eng Mater. 2010;9(5):349.CrossRef
[28]
go back to reference Iida T, Guthrie RIL. The Physical Properties of Liquid Metals. Oxford: Clarendon Press; 1988. 1. Iida T, Guthrie RIL. The Physical Properties of Liquid Metals. Oxford: Clarendon Press; 1988. 1.
[29]
go back to reference Ganesan M, Dye D, Lee P. A technique for characterizing microsegregation in multicomponent alloys and its application to single-crystal superalloy castings. Metall Mater Trans A. 2005;36(8):2191.CrossRef Ganesan M, Dye D, Lee P. A technique for characterizing microsegregation in multicomponent alloys and its application to single-crystal superalloy castings. Metall Mater Trans A. 2005;36(8):2191.CrossRef
[30]
go back to reference Mehrabian R, Keane MA, Flemings MC. Experiments on macrosegregation and freckle formation. Metall Trans. 1970;1(11):3238. Mehrabian R, Keane MA, Flemings MC. Experiments on macrosegregation and freckle formation. Metall Trans. 1970;1(11):3238.
Metadata
Title
Phase-field–lattice Boltzmann simulation of dendrite growth under natural convection in multicomponent superalloy solidification
Authors
Cong Yang
Qing-Yan Xu
Bai-Cheng Liu
Publication date
19-08-2019
Publisher
Nonferrous Metals Society of China
Published in
Rare Metals / Issue 2/2020
Print ISSN: 1001-0521
Electronic ISSN: 1867-7185
DOI
https://doi.org/10.1007/s12598-019-01292-5

Other articles of this Issue 2/2020

Rare Metals 2/2020 Go to the issue

Premium Partners