Skip to main content
Top
Published in: Polymer Bulletin 4/2015

01-04-2015 | Original Paper

Phenol substituted polymethylsilane: a soluble conducting polymer with low cross-linking density

Authors: Wenjing Pu, Xiaodong Li, Gongyi Li, Tianjiao Hu

Published in: Polymer Bulletin | Issue 4/2015

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Polymethylsilane (PMS) is made up of backbone of –Si–Si–, which is potentially a semi-conducting or conducting polymer after doping. Different phenolic groups are introduced into the main chain through Si–H substitution reaction. The polymer structures, optical properties and conducting performance are characterized. The aromatic modified PMS show a significant red-shift in UV absorption and fluorescent emission, higher oxidation resistance in the air and better film-forming properties. The conductivity values are about 10−6 S cm−1 and reach as high as 10−5 S cm−1 after I2-doping. At the same time, they also keep a good solubility in several organic solvents. The effect of functional groups in improving optical and conductive performance is studied, and the relationship between crosslink structure and oxidation resistance is discussed.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Fujiki M, Koe JR, Terao K, Sato T, Teramoto A, Watanabe J (2003) Optically Active Polysilanes. Ten Years of Progress and New Polymer Twist for Nanoscience and Nanotechnology. Polym J 35:297–344CrossRef Fujiki M, Koe JR, Terao K, Sato T, Teramoto A, Watanabe J (2003) Optically Active Polysilanes. Ten Years of Progress and New Polymer Twist for Nanoscience and Nanotechnology. Polym J 35:297–344CrossRef
2.
go back to reference Beach JV, Loy DA, Hsiao Y, Waymouth RM (1995) Environmentally friendly polysilane photoresists. In: ACS symposium series. Washington, DC, chap 23, pp 355–366 Beach JV, Loy DA, Hsiao Y, Waymouth RM (1995) Environmentally friendly polysilane photoresists. In: ACS symposium series. Washington, DC, chap 23, pp 355–366
3.
go back to reference West R (2009) Polysilanes: Conformations, chromotropism and conductivity. John Wiley & Sons, Ltd., pp 1–23 West R (2009) Polysilanes: Conformations, chromotropism and conductivity. John Wiley & Sons, Ltd., pp 1–23
4.
go back to reference Seki S, Tagawa S (2007) Optoelectronic Properties and Nanostructure Formation of -Conjugated Polymers. Polym J 39:277–293CrossRef Seki S, Tagawa S (2007) Optoelectronic Properties and Nanostructure Formation of -Conjugated Polymers. Polym J 39:277–293CrossRef
5.
go back to reference Sacarescu L, Bockholt A, Siokou A, Simionescu M, Sacarescu G (2009) Structural and Optical Properties of Polyhydrosilanes. Macromol Chem Phys 210:2015–2021CrossRef Sacarescu L, Bockholt A, Siokou A, Simionescu M, Sacarescu G (2009) Structural and Optical Properties of Polyhydrosilanes. Macromol Chem Phys 210:2015–2021CrossRef
6.
go back to reference Frackowiak E, Khomenko V, Jurewicz K, Lota K, Eguin FB (2006) Supercapacitors based on conducting polymers-nanotubes composites. J Power Sour 153:413–418CrossRef Frackowiak E, Khomenko V, Jurewicz K, Lota K, Eguin FB (2006) Supercapacitors based on conducting polymers-nanotubes composites. J Power Sour 153:413–418CrossRef
7.
go back to reference Bréfort JL, Corriu RJP, Gerbier P, Guqrin C, Henner BJL, Jean A, Kuhlmann T (1992) New Poly[(sllylene)diacetylenes] and Poly[(germylene)dlacetylenes]: Synthesis and Conductive Properties. Organometallics 11:2500–2506CrossRef Bréfort JL, Corriu RJP, Gerbier P, Guqrin C, Henner BJL, Jean A, Kuhlmann T (1992) New Poly[(sllylene)diacetylenes] and Poly[(germylene)dlacetylenes]: Synthesis and Conductive Properties. Organometallics 11:2500–2506CrossRef
8.
go back to reference Watanabe A (2003) Optical properties of polysilanes with various silicon skeletons. J Organomet Chem 685:122–133CrossRef Watanabe A (2003) Optical properties of polysilanes with various silicon skeletons. J Organomet Chem 685:122–133CrossRef
9.
go back to reference Kobayashi T, Hatayama K, Suzuki S, Abe M, Watanabe H, Kijima M, Shirakawa H (1998) Preparation of substituted network polysilanes and their electrical conductivities. Organometallics 17:1646–1648CrossRef Kobayashi T, Hatayama K, Suzuki S, Abe M, Watanabe H, Kijima M, Shirakawa H (1998) Preparation of substituted network polysilanes and their electrical conductivities. Organometallics 17:1646–1648CrossRef
10.
go back to reference Watanabe A, Tsutsumi Y, Matsuda M (1995) Effect of Si-skeleton dimensionality on optical and electrical properties of poly(methylphenylsilylene) and poly(phenylsilyne). Synth Met 74:191–196CrossRef Watanabe A, Tsutsumi Y, Matsuda M (1995) Effect of Si-skeleton dimensionality on optical and electrical properties of poly(methylphenylsilylene) and poly(phenylsilyne). Synth Met 74:191–196CrossRef
11.
go back to reference Sacarescu L, Simionescu M, Sacarescu G (2011) Synthesis of Polyhydrosilanes-graft-poly(ethyleneglycol)methyl Ether. Int J Polym Anal Charact 16:360–368CrossRef Sacarescu L, Simionescu M, Sacarescu G (2011) Synthesis of Polyhydrosilanes-graft-poly(ethyleneglycol)methyl Ether. Int J Polym Anal Charact 16:360–368CrossRef
12.
go back to reference Tang H, Li J, Qin J (2001) Synthesis of multifunctional polysilanes via Si–Cl containing. React Funct Polym 48:193–199CrossRef Tang H, Li J, Qin J (2001) Synthesis of multifunctional polysilanes via Si–Cl containing. React Funct Polym 48:193–199CrossRef
13.
go back to reference Osakada K (2000) Structure and chemical properties of mononuclear and dinuclear silylrhodium complexes. Activation of the Si–C bond and formation of Si–Cl and Si–SR bonds promoted by Rh complexes. J Organomet Chem 611:323–331CrossRef Osakada K (2000) Structure and chemical properties of mononuclear and dinuclear silylrhodium complexes. Activation of the Si–C bond and formation of Si–Cl and Si–SR bonds promoted by Rh complexes. J Organomet Chem 611:323–331CrossRef
14.
go back to reference Hirayama MKN, Caseri WR, Suter UW (1999) Strongly attached ultrathin polymer layers on metal surfaces obtained by activation of Si–H bonds. Appl Surf Sci 143:256–264CrossRef Hirayama MKN, Caseri WR, Suter UW (1999) Strongly attached ultrathin polymer layers on metal surfaces obtained by activation of Si–H bonds. Appl Surf Sci 143:256–264CrossRef
15.
go back to reference Damewood JR, West R (1985) Structure calculations for silane polymers: polysilane and poly(dimethylsilylene). Macromolecules 18:159–164CrossRef Damewood JR, West R (1985) Structure calculations for silane polymers: polysilane and poly(dimethylsilylene). Macromolecules 18:159–164CrossRef
16.
go back to reference Saxena A, Okoshi K, Fujiki M, Naito M, Guo G, Hagihara T, Ishikawa M (2004) Spectroscopic Evidence of Si–H End Groups in Dialkylpolysilanes Synthesized via Wurtz Coupling. Macromolecules 37:367–670CrossRef Saxena A, Okoshi K, Fujiki M, Naito M, Guo G, Hagihara T, Ishikawa M (2004) Spectroscopic Evidence of Si–H End Groups in Dialkylpolysilanes Synthesized via Wurtz Coupling. Macromolecules 37:367–670CrossRef
17.
go back to reference Feigl A, Bockholt A, Weis J, Rieger B (2011) Modern Synthetic and Application Aspects of Polysilanes: An Underestimated Class of Materials? Adv Polym Sci 235:1–31CrossRef Feigl A, Bockholt A, Weis J, Rieger B (2011) Modern Synthetic and Application Aspects of Polysilanes: An Underestimated Class of Materials? Adv Polym Sci 235:1–31CrossRef
18.
go back to reference Fukushima M, Noguchi N, Aramata M, Hamada Y, Tabei E, Mori S, Yamamoto Y (1998) Polysilanes as conducting material producers and their application to. Synth Met 97:273–280CrossRef Fukushima M, Noguchi N, Aramata M, Hamada Y, Tabei E, Mori S, Yamamoto Y (1998) Polysilanes as conducting material producers and their application to. Synth Met 97:273–280CrossRef
19.
go back to reference Shieh Y, Hsu T, Sawan SP (1996) Conductivities of Polysilanes. J Appl Polym Sci 62:1723–1728CrossRef Shieh Y, Hsu T, Sawan SP (1996) Conductivities of Polysilanes. J Appl Polym Sci 62:1723–1728CrossRef
20.
go back to reference Callender CL, Carere CA, Albert J, Zhou LL, Worsfold DJ (1992) Determination of third-order nonlinear optical susceptibilities of polysilane thin films. J Opt Soc Am B 9:518–523CrossRef Callender CL, Carere CA, Albert J, Zhou LL, Worsfold DJ (1992) Determination of third-order nonlinear optical susceptibilities of polysilane thin films. J Opt Soc Am B 9:518–523CrossRef
21.
go back to reference Koe J (2009) Contemporary polysilane synthesis and functionalisation. Polym Int 58:255–260CrossRef Koe J (2009) Contemporary polysilane synthesis and functionalisation. Polym Int 58:255–260CrossRef
22.
go back to reference Hayase S (2003) Polysilanes for semiconductor fabrication. Prog Polym Sci 28:359–381CrossRef Hayase S (2003) Polysilanes for semiconductor fabrication. Prog Polym Sci 28:359–381CrossRef
23.
go back to reference Chojnowski J, Cypryk M, Kurjata J (2003) Organic polysilanes interrupted by heteroatoms. Prog Polym Sci 28:691–728CrossRef Chojnowski J, Cypryk M, Kurjata J (2003) Organic polysilanes interrupted by heteroatoms. Prog Polym Sci 28:691–728CrossRef
24.
go back to reference Levitsky MM, Zavin BG, Chernyavskii AL, Erokhin VV (1999) A new way of introducing metal oxide fragments into polysilane chains. Russ Chem Bull 48:1789–1790CrossRef Levitsky MM, Zavin BG, Chernyavskii AL, Erokhin VV (1999) A new way of introducing metal oxide fragments into polysilane chains. Russ Chem Bull 48:1789–1790CrossRef
25.
go back to reference Lee S (2009) A correlation between the optical and mechanical properties of novel polysilane/polysiloxane nanocomposites. Polym Bull 63:385–396CrossRef Lee S (2009) A correlation between the optical and mechanical properties of novel polysilane/polysiloxane nanocomposites. Polym Bull 63:385–396CrossRef
26.
go back to reference Kamata N, Terunuma D, Ishii R, Satoh H, Aihara S, Yaoita Y, Tonsyo S (2003) Effcient energy transfer from polysilane molecules and its application to electroluminescence. J Organomet Chem 685:235–242CrossRef Kamata N, Terunuma D, Ishii R, Satoh H, Aihara S, Yaoita Y, Tonsyo S (2003) Effcient energy transfer from polysilane molecules and its application to electroluminescence. J Organomet Chem 685:235–242CrossRef
27.
go back to reference Jones RG, Benfield RE, Swain AC, Webb SJ, Went MJ (1995) Chloromethylation of poly(methylphenylsilane). Polymer 36:393–398CrossRef Jones RG, Benfield RE, Swain AC, Webb SJ, Went MJ (1995) Chloromethylation of poly(methylphenylsilane). Polymer 36:393–398CrossRef
28.
go back to reference Kashimura S, Tane Y, Ishifune M, Murai Y, Hashimoto S, Nakai T, Hirose R, Murase H (2008) Practical method for the synthesis of polysilanes using Mg and Lewis acid system. Tetrahedron Lett 49:269–271CrossRef Kashimura S, Tane Y, Ishifune M, Murai Y, Hashimoto S, Nakai T, Hirose R, Murase H (2008) Practical method for the synthesis of polysilanes using Mg and Lewis acid system. Tetrahedron Lett 49:269–271CrossRef
29.
go back to reference Matsuura Y, Matsukawa K, Kawabata R, Higashi N, Niwa M, Inoue H (2002) Synthesis of polysilane-acrylamide copolymers by photopolymerization and their application to polysilane-silica hybrid thin films. Polymer 43:1549–1553CrossRef Matsuura Y, Matsukawa K, Kawabata R, Higashi N, Niwa M, Inoue H (2002) Synthesis of polysilane-acrylamide copolymers by photopolymerization and their application to polysilane-silica hybrid thin films. Polymer 43:1549–1553CrossRef
30.
go back to reference Ohshita J, Yamashita A, Hiraoka T, Shinpo A, Kunai A (1997) Polymeric Organosilicon Systems. 27. Macromolecules 30:1540–1549CrossRef Ohshita J, Yamashita A, Hiraoka T, Shinpo A, Kunai A (1997) Polymeric Organosilicon Systems. 27. Macromolecules 30:1540–1549CrossRef
31.
go back to reference Furukawa K, Ebata K, Nakashima H, Kashimura Y, Torimitsu K (2003) Polysilane Bearing “Sulfide Tripod” Terminus: Preparation and Selective Chemisorption on Gold Surface. Macromolecules 36:9–11CrossRef Furukawa K, Ebata K, Nakashima H, Kashimura Y, Torimitsu K (2003) Polysilane Bearing “Sulfide Tripod” Terminus: Preparation and Selective Chemisorption on Gold Surface. Macromolecules 36:9–11CrossRef
32.
go back to reference Xing X, Liu L, Li XD, Wang HZ (2008) Synthesis and characterization of polysilanes with antimony side groups. J Natl Univ Def Technol 30:16–20 (Simplified Chinese) Xing X, Liu L, Li XD, Wang HZ (2008) Synthesis and characterization of polysilanes with antimony side groups. J Natl Univ Def Technol 30:16–20 (Simplified Chinese)
33.
go back to reference Xing X, Li XD, Guo AQ, Cao F, Wang J (2004) Study on synthesis and end-blocking of polymethylsilane. Acta Polym Sin 5:705–708 (Simplified Chinese) Xing X, Li XD, Guo AQ, Cao F, Wang J (2004) Study on synthesis and end-blocking of polymethylsilane. Acta Polym Sin 5:705–708 (Simplified Chinese)
34.
go back to reference Xing X, Guo AQ, Liu L, Li XD (2012) Synthesis and Electronical Property of Antimony-Substituted Polysilanes. Open Mater Sci J 6:28–33CrossRef Xing X, Guo AQ, Liu L, Li XD (2012) Synthesis and Electronical Property of Antimony-Substituted Polysilanes. Open Mater Sci J 6:28–33CrossRef
35.
go back to reference West R, David LD, Djurovich PI, Stearley KL, Srinivasan KSV, Yu H (1981) Phenylmethylpolysilanes: Formable Silane Copolymers with Potential Semiconducting Properties. J Am Chem Soc 103:7352–7354CrossRef West R, David LD, Djurovich PI, Stearley KL, Srinivasan KSV, Yu H (1981) Phenylmethylpolysilanes: Formable Silane Copolymers with Potential Semiconducting Properties. J Am Chem Soc 103:7352–7354CrossRef
36.
go back to reference Rushkin IL, Internante LV (1995) Alkoxy-Substituted Poly(silylenemethy1enes). A New Class of Alkoxy-Substituted Polymers. Macromolecules 28:5160–5161CrossRef Rushkin IL, Internante LV (1995) Alkoxy-Substituted Poly(silylenemethy1enes). A New Class of Alkoxy-Substituted Polymers. Macromolecules 28:5160–5161CrossRef
37.
go back to reference Qiu H, Du Z (1989) Organosilane Polymers: Formable Polymers Containing Reactive Side Groups. J Polym Sci Polym Chem 27:2861–2869CrossRef Qiu H, Du Z (1989) Organosilane Polymers: Formable Polymers Containing Reactive Side Groups. J Polym Sci Polym Chem 27:2861–2869CrossRef
38.
go back to reference Sãcãrescu G, Voiculescu N, Marcu M, Sãcãrescu L, Ardeleanu R, Simionescu M (1997) Polyhydrosilanes 1. Synthesis. J Macromol Sci Pure Appl Chem 34:509–516CrossRef Sãcãrescu G, Voiculescu N, Marcu M, Sãcãrescu L, Ardeleanu R, Simionescu M (1997) Polyhydrosilanes 1. Synthesis. J Macromol Sci Pure Appl Chem 34:509–516CrossRef
Metadata
Title
Phenol substituted polymethylsilane: a soluble conducting polymer with low cross-linking density
Authors
Wenjing Pu
Xiaodong Li
Gongyi Li
Tianjiao Hu
Publication date
01-04-2015
Publisher
Springer Berlin Heidelberg
Published in
Polymer Bulletin / Issue 4/2015
Print ISSN: 0170-0839
Electronic ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-015-1304-9

Other articles of this Issue 4/2015

Polymer Bulletin 4/2015 Go to the issue

Premium Partners