Skip to main content
Top
Published in: Journal of Materials Science: Materials in Electronics 2/2021

01-01-2021

Phosphine based covalent organic framework as an advanced electrode material for electrochemical energy storage

Authors: Muhammad Sajjad, Rao Tao, Li Qiu

Published in: Journal of Materials Science: Materials in Electronics | Issue 2/2021

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Covalent organic frameworks (COFs) are designable polymers that have received great research interest and are regarded as reliable supercapacitor (SC) electrode materials. However, the poor capacitive performance in pristine form due to their insoluble non-conductive nature is the primary concern that restricts their long term use for energy storage applications. Owing to the increased requirements for electrochemical energy storage systems, exploiting porous architectures with abundant channels, high surface areas, and electrical conductivities as a type of promising electrode material for pseudocapacitors is vital. Keeping this in mind, Phosphine (PPh3)-based COF denoted as (Phos-COF-1) is being reported for the first time for SCs application. The as-prepared material was characterized by various characterization tools to gain insight into its textural and structural properties. The structural analysis revealed the crystalline nature of the sample. Remarkably, the BET analysis indicated a high surface area of ~ 818 m2 g−1 with the pore diameter centered at 1.56 nm, demonstrating the microporous structure of the sample. The SEM and TEM analysis further confirm the ordered micropore structure of the as-prepared sample as one of the most characteristic features of COFs materials. The average particle size ranges from 11 to 13 μm. The electrochemical analysis showed the pseudocapacitive nature of the Phos-COF-1 electrode with improved reversible redox properties that originated from the phosphine moieties. More importantly, when Phos-COF-1 was employed as an electrode material for SCs exhibited a specific capacitance of 100 F g−1 at the current density of 1 A g−1, a high energy density of 32 Wh kg−1 at the power density 0.4 W kg−1 within a potential window of 0.8 V. We discovered that the Phos-COF-1 electrode provides fast pathways for ion transport and shorten the ion diffusion path owing to its high surface area, and porous structure, demonstrating its great potential for electrochemical energy storage systems in the future.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference N. Huang, P. Wang, D. Jiang, Covalent organic frameworks: a materials platform for structural and functional designs. Nat Rev Mater 1(10), 16068 (2016)CrossRef N. Huang, P. Wang, D. Jiang, Covalent organic frameworks: a materials platform for structural and functional designs. Nat Rev Mater 1(10), 16068 (2016)CrossRef
2.
go back to reference C.S. Diercks, O.M. Yaghi, The atom, the molecule, and the covalent organic framework. Science 12, 165–173 (2017) C.S. Diercks, O.M. Yaghi, The atom, the molecule, and the covalent organic framework. Science 12, 165–173 (2017)
3.
go back to reference H. Xu, J. Gao, D. Jiang, Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat Chem 7(11), 905 (2015)CrossRef H. Xu, J. Gao, D. Jiang, Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat Chem 7(11), 905 (2015)CrossRef
4.
go back to reference R. Tilford, S.J. Mugavero Iii, P.J. Pellechia, J.J. Lavigne, Adv Mater 20, 2741–2746 (2008)CrossRef R. Tilford, S.J. Mugavero Iii, P.J. Pellechia, J.J. Lavigne, Adv Mater 20, 2741–2746 (2008)CrossRef
5.
go back to reference L. Ascherl et al., Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks. Nat Chem 8(4), 310 (2016)CrossRef L. Ascherl et al., Molecular docking sites designed for the generation of highly crystalline covalent organic frameworks. Nat Chem 8(4), 310 (2016)CrossRef
6.
go back to reference C.J. Doonan et al., Exceptional ammonia uptake by a covalent organic framework. Nat Chem 2(3), 235 (2010)CrossRef C.J. Doonan et al., Exceptional ammonia uptake by a covalent organic framework. Nat Chem 2(3), 235 (2010)CrossRef
7.
go back to reference P. Kuhn, M. Antonietti, A. Thomas, Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47(18), 3450–3453 (2008)CrossRef P. Kuhn, M. Antonietti, A. Thomas, Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47(18), 3450–3453 (2008)CrossRef
8.
go back to reference A.P. Cote, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger, O.M. Yaghi, Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005)CrossRef A.P. Cote, A.I. Benin, N.W. Ockwig, M. O’Keeffe, A.J. Matzger, O.M. Yaghi, Porous, crystalline, covalent organic frameworks. Science 310(5751), 1166–1170 (2005)CrossRef
9.
go back to reference S. Lu et al., Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications. J. Am. Chem. Soc. 139(47), 17082–17088 (2017)CrossRef S. Lu et al., Synthesis of ultrafine and highly dispersed metal nanoparticles confined in a thioether-containing covalent organic framework and their catalytic applications. J. Am. Chem. Soc. 139(47), 17082–17088 (2017)CrossRef
10.
go back to reference R. Tao, X. Ma, X. Wei, Y. Jin, Li. Qiu, W. Zhang, Porous organic polymer material supported palladium nanoparticles. J Mater. Chem. A 8(34), 17360–17391 (2020)CrossRef R. Tao, X. Ma, X. Wei, Y. Jin, Li. Qiu, W. Zhang, Porous organic polymer material supported palladium nanoparticles. J Mater. Chem. A 8(34), 17360–17391 (2020)CrossRef
11.
go back to reference L. Bai et al., Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chem. Commun. 52(22), 4128–4131 (2016)CrossRef L. Bai et al., Nanoscale covalent organic frameworks as smart carriers for drug delivery. Chem. Commun. 52(22), 4128–4131 (2016)CrossRef
12.
go back to reference C. Zhang et al., Highly fluorescent polyimide covalent organic nanosheets as sensing probes for the detection of 2, 4, 6-trinitrophenol. ACS Appl. Mater. Interfaces. 9(15), 13415–13421 (2017)CrossRef C. Zhang et al., Highly fluorescent polyimide covalent organic nanosheets as sensing probes for the detection of 2, 4, 6-trinitrophenol. ACS Appl. Mater. Interfaces. 9(15), 13415–13421 (2017)CrossRef
13.
go back to reference X. Feng et al., High-rate charge-carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction. Angew. Chem. Int. Ed. 51(11), 2618–2622 (2012)CrossRef X. Feng et al., High-rate charge-carrier transport in porphyrin covalent organic frameworks: switching from hole to electron to ambipolar conduction. Angew. Chem. Int. Ed. 51(11), 2618–2622 (2012)CrossRef
14.
go back to reference X. Ding et al., An n-channel two-dimensional covalent organic framework. J. Am. Chem. Soc. 133(37), 14510–14513 (2011)CrossRef X. Ding et al., An n-channel two-dimensional covalent organic framework. J. Am. Chem. Soc. 133(37), 14510–14513 (2011)CrossRef
15.
go back to reference X.-D. Li et al., Design of tetraphenyl silsesquioxane based covalent-organic frameworks as hydrogen storage materials. J. Mater. Chem. A 2(43), 18554–18561 (2014)CrossRef X.-D. Li et al., Design of tetraphenyl silsesquioxane based covalent-organic frameworks as hydrogen storage materials. J. Mater. Chem. A 2(43), 18554–18561 (2014)CrossRef
16.
go back to reference G. Zhao et al., Dual active site of the Azo and carbonyl-modified covalent organic framework for high-performance Li storage. ACS Energy Lett. 5(4), 1022–1031 (2020)CrossRef G. Zhao et al., Dual active site of the Azo and carbonyl-modified covalent organic framework for high-performance Li storage. ACS Energy Lett. 5(4), 1022–1031 (2020)CrossRef
17.
go back to reference Li, J., et al. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 49(11), 110–135 (2020)CrossRef Li, J., et al. Bulk COFs and COF nanosheets for electrochemical energy storage and conversion. Chem. Soc. Rev. 49(11), 110–135 (2020)CrossRef
18.
go back to reference L. Li et al., Ultrastable triazine-based covalent organic framework with an interlayer hydrogen bonding for supercapacitor applications. ACS Appl. Mater. Interfaces 11(29), 26355–26363 (2019)CrossRef L. Li et al., Ultrastable triazine-based covalent organic framework with an interlayer hydrogen bonding for supercapacitor applications. ACS Appl. Mater. Interfaces 11(29), 26355–26363 (2019)CrossRef
19.
go back to reference V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014)CrossRef V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597–1614 (2014)CrossRef
20.
go back to reference A. Burke, Ultracapacitors: why, how, and where is the technology. J. Power Sour. 91(1), 37–50 (2000)CrossRef A. Burke, Ultracapacitors: why, how, and where is the technology. J. Power Sour. 91(1), 37–50 (2000)CrossRef
21.
go back to reference Zhao, J., et al. Magnetic and electrochemical properties of CuFe2O4 hollow fibers fabricated by simple electrospinning and direct annealing. CrystEngComm 14(18), 5879–5885 (2012)CrossRef Zhao, J., et al. Magnetic and electrochemical properties of CuFe2O4 hollow fibers fabricated by simple electrospinning and direct annealing. CrystEngComm 14(18), 5879–5885 (2012)CrossRef
22.
go back to reference Wang, Q., et al., Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells. J. Mater. Chem. 22(40) (2012) Wang, Q., et al., Morphology evolution of urchin-like NiCo2O4 nanostructures and their applications as psuedocapacitors and photoelectrochemical cells. J. Mater. Chem. 22(40) (2012)
23.
go back to reference M. Wang et al., Covalent organic frameworks: a new class of porous organic frameworks for supercapacitor electrodes. ChemElectroChem 6(12), 2984–2997 (2019)CrossRef M. Wang et al., Covalent organic frameworks: a new class of porous organic frameworks for supercapacitor electrodes. ChemElectroChem 6(12), 2984–2997 (2019)CrossRef
24.
go back to reference L. Li et al., Ultrastable triazine-based covalent organic framework with an interlayer hydrogen bonding for supercapacitor applications. ACS Appl Mater Interfaces 11(29), 26355–26363 (2019)CrossRef L. Li et al., Ultrastable triazine-based covalent organic framework with an interlayer hydrogen bonding for supercapacitor applications. ACS Appl Mater Interfaces 11(29), 26355–26363 (2019)CrossRef
25.
go back to reference F. Xu et al., Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. Angew Chem Int Ed Engl 54(23), 6814–6818 (2015)CrossRef F. Xu et al., Radical covalent organic frameworks: a general strategy to immobilize open-accessible polyradicals for high-performance capacitive energy storage. Angew Chem Int Ed Engl 54(23), 6814–6818 (2015)CrossRef
26.
go back to reference S. Chandra et al., Molecular level control of the capacitance of two-dimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials. Chem. Mater. 29(5), 2074–2080 (2017)CrossRef S. Chandra et al., Molecular level control of the capacitance of two-dimensional covalent organic frameworks: role of hydrogen bonding in energy storage materials. Chem. Mater. 29(5), 2074–2080 (2017)CrossRef
27.
go back to reference R. Tao et al., Phosphine-based covalent organic framework for the controlled synthesis of broad-scope ultrafine nanoparticles. Small 16(8), 1906005 (2020)CrossRef R. Tao et al., Phosphine-based covalent organic framework for the controlled synthesis of broad-scope ultrafine nanoparticles. Small 16(8), 1906005 (2020)CrossRef
28.
go back to reference A.T.A. Ahmed et al., Fabrication of FeO@ CuCo2S4 multifunctional electrode for ultrahigh-capacity supercapacitors and efficient oxygen evolution reaction. Int. J. Energy Res. 44.3, 1798–1811 (2020)CrossRef A.T.A. Ahmed et al., Fabrication of FeO@ CuCo2S4 multifunctional electrode for ultrahigh-capacity supercapacitors and efficient oxygen evolution reaction. Int. J. Energy Res. 44.3, 1798–1811 (2020)CrossRef
29.
go back to reference S. Shinde et al., Improved synthesis of copper oxide nanosheets and its application in development of supercapacitor and antimicrobial agents. J. Ind. Eng. Chem. 36, 116–120 (2016)CrossRef S. Shinde et al., Improved synthesis of copper oxide nanosheets and its application in development of supercapacitor and antimicrobial agents. J. Ind. Eng. Chem. 36, 116–120 (2016)CrossRef
30.
go back to reference Khalafallah, D., et al. Tailoring hierarchical yolk-shelled nickel cobalt sulfide hollow cages with carbon tuning for asymmetric supercapacitors and efficient urea electrocatalysis. Electrochimica Acta 350, 136399 (2020) Khalafallah, D., et al. Tailoring hierarchical yolk-shelled nickel cobalt sulfide hollow cages with carbon tuning for asymmetric supercapacitors and efficient urea electrocatalysis. Electrochimica Acta 350, 136399 (2020)
31.
go back to reference Y. Wang, Q. Zhu, H. Zhang, Fabrication of beta-Ni(OH)2 and NiO hollow spheres by a facile template-free process. Chem Commun (Camb) 41, 5231–5233 (2005)CrossRef Y. Wang, Q. Zhu, H. Zhang, Fabrication of beta-Ni(OH)2 and NiO hollow spheres by a facile template-free process. Chem Commun (Camb) 41, 5231–5233 (2005)CrossRef
32.
go back to reference A. Lokhande et al., The versatility of copper tin sulfide. J. Mater. Chem. A 7(29), 17118–17182 (2019)CrossRef A. Lokhande et al., The versatility of copper tin sulfide. J. Mater. Chem. A 7(29), 17118–17182 (2019)CrossRef
33.
go back to reference Y.P. Gao, K.J. Huang, NiCo2S4 materials for supercapacitor applications. Chem. Asian J. 12(16), 1969–1984 (2017)CrossRef Y.P. Gao, K.J. Huang, NiCo2S4 materials for supercapacitor applications. Chem. Asian J. 12(16), 1969–1984 (2017)CrossRef
34.
go back to reference C. Chen et al., Self-assembled free-standing graphite oxide membrane. Adv. Mater. 21(29), 3007–3011 (2009)CrossRef C. Chen et al., Self-assembled free-standing graphite oxide membrane. Adv. Mater. 21(29), 3007–3011 (2009)CrossRef
35.
go back to reference N. Elgrishi et al., A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95(2), 197–206 (2017)CrossRef N. Elgrishi et al., A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95(2), 197–206 (2017)CrossRef
36.
go back to reference F. Cai et al., Hierarchical CNT@ NiCo 2 O 4 core–shell hybrid nanostructure for high-performance supercapacitors. J. Mater. Chem. A 2(29), 11509–11515 (2014)CrossRef F. Cai et al., Hierarchical CNT@ NiCo 2 O 4 core–shell hybrid nanostructure for high-performance supercapacitors. J. Mater. Chem. A 2(29), 11509–11515 (2014)CrossRef
37.
go back to reference M. Sajjad et al., NiCo2S4 nanosheet grafted SiO2@C core-shelled spheres as a novel electrode for high performance supercapacitors. Nanotechnology 31(4), 045403 (2020)CrossRef M. Sajjad et al., NiCo2S4 nanosheet grafted SiO2@C core-shelled spheres as a novel electrode for high performance supercapacitors. Nanotechnology 31(4), 045403 (2020)CrossRef
38.
go back to reference Y. Lu et al., NiCo2S4/carbon nanotube nanocomposites with a chain-like architecture for enhanced supercapacitor performance. CrystEngComm 18(40), 7696–7706 (2016)CrossRef Y. Lu et al., NiCo2S4/carbon nanotube nanocomposites with a chain-like architecture for enhanced supercapacitor performance. CrystEngComm 18(40), 7696–7706 (2016)CrossRef
39.
go back to reference C.R. DeBlase et al., β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135(45), 16821–16824 (2013)CrossRef C.R. DeBlase et al., β-Ketoenamine-linked covalent organic frameworks capable of pseudocapacitive energy storage. J. Am. Chem. Soc. 135(45), 16821–16824 (2013)CrossRef
40.
go back to reference S. Liu et al., All-organic covalent organic framework/polyaniline composites as stable electrode for high-performance supercapacitors. Mater. Lett. 236, 354–357 (2019)CrossRef S. Liu et al., All-organic covalent organic framework/polyaniline composites as stable electrode for high-performance supercapacitors. Mater. Lett. 236, 354–357 (2019)CrossRef
41.
go back to reference Y. Qiu et al., Ferrocenyl-functionalized carbon nanotubes with greatly improved surface reactivity for enhancing electrocapacitance. J. Organomet. Chem. 880, 349–354 (2019)CrossRef Y. Qiu et al., Ferrocenyl-functionalized carbon nanotubes with greatly improved surface reactivity for enhancing electrocapacitance. J. Organomet. Chem. 880, 349–354 (2019)CrossRef
42.
go back to reference A.M. Khattak et al., A redox-active 2D covalent organic framework with pyridine moieties capable of faradaic energy storage. J. Mater. Chem. A 4(42), 16312–16317 (2016)CrossRef A.M. Khattak et al., A redox-active 2D covalent organic framework with pyridine moieties capable of faradaic energy storage. J. Mater. Chem. A 4(42), 16312–16317 (2016)CrossRef
43.
go back to reference Z. Cheng et al., Synthesis of a Novel Mn (II)-porphyrins polycondensation polymer and its application as pseudo-capacitor electrode material. J. Organomet. Chem. 900, 120940 (2019)CrossRef Z. Cheng et al., Synthesis of a Novel Mn (II)-porphyrins polycondensation polymer and its application as pseudo-capacitor electrode material. J. Organomet. Chem. 900, 120940 (2019)CrossRef
44.
go back to reference Manikandan, R., et al. Polycrystalline V2O5/Na0.33V2O5 electrode material for Li+ ion redox supercapacitor. Electrochimica Acta 230, 492–500 (2017) Manikandan, R., et al. Polycrystalline V2O5/Na0.33V2O5 electrode material for Li+ ion redox supercapacitor. Electrochimica Acta 230, 492–500 (2017)
45.
go back to reference B. Pandit, L.K. Bommineedi, B.R. Sankapal, Electrochemical engineering approach of high performance solid-state flexible supercapacitor device based on chemically synthesized VS2 nanoregime structure. J. Energy Chem. 31, 79–88 (2019)CrossRef B. Pandit, L.K. Bommineedi, B.R. Sankapal, Electrochemical engineering approach of high performance solid-state flexible supercapacitor device based on chemically synthesized VS2 nanoregime structure. J. Energy Chem. 31, 79–88 (2019)CrossRef
46.
go back to reference B. Pandit et al., V 2 O 5 encapsulated MWCNTs in 2D surface architecture: complete solid-state bendable highly stabilized energy efficient supercapacitor device. Sci Rep 7, 43430 (2017)CrossRef B. Pandit et al., V 2 O 5 encapsulated MWCNTs in 2D surface architecture: complete solid-state bendable highly stabilized energy efficient supercapacitor device. Sci Rep 7, 43430 (2017)CrossRef
47.
go back to reference C. Zhong et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44(21), 7484–7539 (2015)CrossRef C. Zhong et al., A review of electrolyte materials and compositions for electrochemical supercapacitors. Chem. Soc. Rev. 44(21), 7484–7539 (2015)CrossRef
Metadata
Title
Phosphine based covalent organic framework as an advanced electrode material for electrochemical energy storage
Authors
Muhammad Sajjad
Rao Tao
Li Qiu
Publication date
01-01-2021
Publisher
Springer US
Published in
Journal of Materials Science: Materials in Electronics / Issue 2/2021
Print ISSN: 0957-4522
Electronic ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-020-04929-9

Other articles of this Issue 2/2021

Journal of Materials Science: Materials in Electronics 2/2021 Go to the issue