Skip to main content
Top

2016 | OriginalPaper | Chapter

Physarum Wires, Sensors and Oscillators

Author : Andrew Adamatzky

Published in: Advances in Physarum Machines

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To make an electronic wetware device doing something useful we need sensors to input information, wires to transfer information between distant parts of the devices, and an oscillator to act as a clock and synchronise the device. We show how slime mould wires, optical colour and tactile sensors and oscillators can be made. A Physarum wire is a protoplasmic tube. Given two pins to be connected by a wire, we place a piece of slime mould at one pin and an attractant at another pin. Physarum propagates towards the attractant and thus connects the pins with a protoplasmic tube. A protoplasmic tube is conductive, it can survive substantial over-voltage and can be used to transfer electrical current to electronic loads. We demonstrate experimental approaches towards programmable routing of Physarum wires with chemoattractants and electrical fields, show how to grow the slime mould wires on almost bare breadboards and electronic circuits, and insulate the Physarum. We evaluate feasibility of slime-mould based colour sensors by illuminating Physarum with red, green, blue and white colours and analysing patterns of the slime mould’s electrical potential oscillations. We define that the slime mould recognises a colour if it reacts to illumination with the colour by a unique changes in amplitude and periods of oscillatory activity. In laboratory experiments we found that the slime mould recognises red and blue colour. The slime mould does not differentiate between green and white colours. The slime mould also recognises when red colour is switched off. We also map colours to diversity of the oscillations: illumination with a white colour increases diversity of amplitudes and periods of oscillations, other colours studied increase diversity either of amplitude or period. We design experimental laboratory implementation of a slime mould based tactile bristles, where the slime mould responds to repeated deflection of bristle by an immediate high-amplitude spike and a prolonged increase in amplitude and width of its oscillation impulses. We demonstrate that signal strength of the Physarum tactile bristle sensor averages near six for an immediate response and two for a prolonged response. Finally, we show how to make an electronic oscillator from the slime mould. The slime mould oscillator is made of two electrodes connected by a protoplasmic tube of the living slime mould. A protoplasmic tube has an average resistance of 3 MOhm. The tube’s resistance is changing over time due to peristaltic contractile activity of the tube. The resistance of the protoplasmic tube oscillates with average period of 73 s and average amplitude of 0.6 MOhm. We present experimental laboratory results on dynamics of Physarum oscillator under direct current voltage up to 15 V and speculate that slime mould P. polycephalum can be employed as a living electrical oscillator in biological and hybrid circuits.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literature
2.
go back to reference Adamatzky, A.: Physarum wires: self-growing self-repairing smart wires made from slime mould. Biomed. Eng. Lett. 3(4), 232–241 (2013)CrossRef Adamatzky, A.: Physarum wires: self-growing self-repairing smart wires made from slime mould. Biomed. Eng. Lett. 3(4), 232–241 (2013)CrossRef
3.
go back to reference Adamatzky, A.: Towards slime mould colour sensor: recognition of colours by Physarum polycephalum. Org. Electron. 14(12), 3355–3361 (2013)CrossRef Adamatzky, A.: Towards slime mould colour sensor: recognition of colours by Physarum polycephalum. Org. Electron. 14(12), 3355–3361 (2013)CrossRef
4.
go back to reference Adamatzky, A.: Slime mould electronic oscillators. Microelectron. Eng. 124, 58–65 (2014)CrossRef Adamatzky, A.: Slime mould electronic oscillators. Microelectron. Eng. 124, 58–65 (2014)CrossRef
5.
go back to reference Adamatzky, A.: Tactile bristle sensors made with slime mold. Sensors J. IEEE 14(2), 324–332 (2014)CrossRef Adamatzky, A.: Tactile bristle sensors made with slime mold. Sensors J. IEEE 14(2), 324–332 (2014)CrossRef
6.
go back to reference Adamatzky, A., Jones, J.: On electrical correlates of Physarum polycephalum spatial activity: can we see physarum machine in the dark? Biophys. Rev. Lett. 6(01n02):29–57 (2011) Adamatzky, A., Jones, J.: On electrical correlates of Physarum polycephalum spatial activity: can we see physarum machine in the dark? Biophys. Rev. Lett. 6(01n02):29–57 (2011)
7.
go back to reference Anderson, J.D.: Galvanotaxis of slime mold. J. Gen. Physiol. 35(1), 1–16 (1951)CrossRef Anderson, J.D.: Galvanotaxis of slime mold. J. Gen. Physiol. 35(1), 1–16 (1951)CrossRef
8.
go back to reference Barth, F.G.: Spider mechanoreceptors. Curr. Opin. Neurobiol. 14(4), 415–422 (2004)CrossRef Barth, F.G.: Spider mechanoreceptors. Curr. Opin. Neurobiol. 14(4), 415–422 (2004)CrossRef
9.
go back to reference Beratan, D.N., Priyadarshy, S., Risser, S.M.: DNA: insulator or wire? Chem. Biol. 4(1), 3–8 (1997)CrossRef Beratan, D.N., Priyadarshy, S., Risser, S.M.: DNA: insulator or wire? Chem. Biol. 4(1), 3–8 (1997)CrossRef
10.
go back to reference Berry, V., Saraf, R.F.: Self-assembly of nanoparticles on live bacterium: an avenue to fabricate electronic devices. Angewandte Chemie 117(41), 6826–6831 (2005)CrossRef Berry, V., Saraf, R.F.: Self-assembly of nanoparticles on live bacterium: an avenue to fabricate electronic devices. Angewandte Chemie 117(41), 6826–6831 (2005)CrossRef
11.
go back to reference Bialczyk, J.: An action spectrum for light avoidance by Physarum nudum plasmodia. Photochem. Photobiol. 30(2), 301–303 (1979)CrossRef Bialczyk, J.: An action spectrum for light avoidance by Physarum nudum plasmodia. Photochem. Photobiol. 30(2), 301–303 (1979)CrossRef
12.
go back to reference Block, I., Wohlfarth-Bottermann, K.E.: Blue light as a medium to influence oscillatory contraction frequency in Physarum. Cell Biol. Int. Rep. 5(1), 73–81 (1981)CrossRef Block, I., Wohlfarth-Bottermann, K.E.: Blue light as a medium to influence oscillatory contraction frequency in Physarum. Cell Biol. Int. Rep. 5(1), 73–81 (1981)CrossRef
13.
go back to reference Cingolani, E., Ionta, V., Giacomello, A., Marbán, E., Cho, H.C.: Creation of a biological wire using cell-targeted paramagnetic beads. Biophys. J. 102(3), 416a (2012)CrossRef Cingolani, E., Ionta, V., Giacomello, A., Marbán, E., Cho, H.C.: Creation of a biological wire using cell-targeted paramagnetic beads. Biophys. J. 102(3), 416a (2012)CrossRef
14.
go back to reference Cutkosky, M.R., Kim, S.: Design and fabrication of multi-material structures for bioinspired robots. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 367(1894):1799–1813 (2009) Cutkosky, M.R., Kim, S.: Design and fabrication of multi-material structures for bioinspired robots. Philos. Trans. R. Soc. Lond. A: Math. Phys. Eng. Sci. 367(1894):1799–1813 (2009)
15.
go back to reference Dahiya, R.S., Valle, M., Metta, G., Lorenzelli, L.: Bio-inspired tactile sensing arrays. In: SPIE Europe Microtechnologies for the New Millennium, pp. 73650D–73650D. International Society for Optics and Photonics (2009) Dahiya, R.S., Valle, M., Metta, G., Lorenzelli, L.: Bio-inspired tactile sensing arrays. In: SPIE Europe Microtechnologies for the New Millennium, pp. 73650D–73650D. International Society for Optics and Photonics (2009)
16.
go back to reference Engel, J., Chen, N., Chen, N., Pandya, S., Liu, C.: Multi-walled carbon nanotube filled conductive elastomers: materials and application to micro transducers. In: Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems, 2006. MEMS 2006 Istanbul, pp 246–249. IEEE (2006) Engel, J., Chen, N., Chen, N., Pandya, S., Liu, C.: Multi-walled carbon nanotube filled conductive elastomers: materials and application to micro transducers. In: Proceedings of the 19th IEEE International Conference on Micro Electro Mechanical Systems, 2006. MEMS 2006 Istanbul, pp 246–249. IEEE (2006)
17.
go back to reference Engel, J.M., Chen, J., Liu, C., Bullen, D.: Polyurethane rubber all-polymer artificial hair cell sensor. J. Microelectromech. Syst. 15(4), 729–736 (2006) Engel, J.M., Chen, J., Liu, C., Bullen, D.: Polyurethane rubber all-polymer artificial hair cell sensor. J. Microelectromech. Syst. 15(4), 729–736 (2006)
18.
go back to reference Geddes, L.A., Baker, L.E.: The specific resistance of biological materiala compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. 5(3), 271–293 (1967)CrossRef Geddes, L.A., Baker, L.E.: The specific resistance of biological materiala compendium of data for the biomedical engineer and physiologist. Med. Biol. Eng. 5(3), 271–293 (1967)CrossRef
19.
go back to reference Guttes, E., Guttes, S., Rusch, H.P.: Morphological observations on growth and differentiation of Physarum polycephalum grown in pure culture. Dev. Biol. 3(5), 588–614 (1961)CrossRef Guttes, E., Guttes, S., Rusch, H.P.: Morphological observations on growth and differentiation of Physarum polycephalum grown in pure culture. Dev. Biol. 3(5), 588–614 (1961)CrossRef
20.
go back to reference Häder, D.-P., Schreckenbach, T.: Phototactic orientation in plasmodia of the acellular slime mold, Physarum polycephalum. Plant Cell Physiol. 25(1), 55–61 (1984) Häder, D.-P., Schreckenbach, T.: Phototactic orientation in plasmodia of the acellular slime mold, Physarum polycephalum. Plant Cell Physiol. 25(1), 55–61 (1984)
21.
go back to reference Hamed, A.M., Tse, Z.T.H., Young, I., Davies, B.L., Lampérth, M.: Applying tactile sensing with piezoelectric materials for minimally invasive surgery and magnetic-resonance-guided interventions. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 223(1), 99–110 (2009)CrossRef Hamed, A.M., Tse, Z.T.H., Young, I., Davies, B.L., Lampérth, M.: Applying tactile sensing with piezoelectric materials for minimally invasive surgery and magnetic-resonance-guided interventions. Proc. Inst. Mech. Eng. Part H: J. Eng. Med. 223(1), 99–110 (2009)CrossRef
22.
go back to reference Hildebrandt, A.: A morphogen for the sporulation of Physarum polycephalum detected by cell fusion experiments. Exp. Cell Res. 167(2), 453–457 (1986)CrossRef Hildebrandt, A.: A morphogen for the sporulation of Physarum polycephalum detected by cell fusion experiments. Exp. Cell Res. 167(2), 453–457 (1986)CrossRef
23.
go back to reference Horowitz, P., Hill, W.: The Art of Electronics. Cambridge University Press, Cambridge (1989) Horowitz, P., Hill, W.: The Art of Electronics. Cambridge University Press, Cambridge (1989)
24.
go back to reference Iwamura, T.: Correlations between protoplasmic streaming and bioelectric potential of a slime mold, Physarum polycephalum. Bot. Mag. 62(735–736), 126–131 (1949) Iwamura, T.: Correlations between protoplasmic streaming and bioelectric potential of a slime mold, Physarum polycephalum. Bot. Mag. 62(735–736), 126–131 (1949)
25.
go back to reference Kakiuchi, Y., Takahashi, T., Murakami, A., Ueda, T.: Light irradiation induces fragmentation of the plasmodium, a novel photomorphogenesis in the true slime mold physarum polycephalum: action spectra and evidence for involvement of the phytochrome. Photochem. Photobiol. 73(3), 324–329 (2001)CrossRef Kakiuchi, Y., Takahashi, T., Murakami, A., Ueda, T.: Light irradiation induces fragmentation of the plasmodium, a novel photomorphogenesis in the true slime mold physarum polycephalum: action spectra and evidence for involvement of the phytochrome. Photochem. Photobiol. 73(3), 324–329 (2001)CrossRef
26.
go back to reference Kamiya, N., Abe, S.: Bioelectric phenomena in the myxomycete plasmodium and their relation to protoplasmic flow. J. Colloid Sci. 5(2), 149–163 (1950)CrossRef Kamiya, N., Abe, S.: Bioelectric phenomena in the myxomycete plasmodium and their relation to protoplasmic flow. J. Colloid Sci. 5(2), 149–163 (1950)CrossRef
27.
go back to reference Kato, Y., Mukai, T., Hayakawa, T., Shibata, T.: Tactile sensor without wire and sensing element in the tactile region based on EIT method. In: Sensors, 2007 IEEE, pp. 792–795. IEEE (2007) Kato, Y., Mukai, T., Hayakawa, T., Shibata, T.: Tactile sensor without wire and sensing element in the tactile region based on EIT method. In: Sensors, 2007 IEEE, pp. 792–795. IEEE (2007)
28.
go back to reference Knowles, D.J.C., Carlile, M.J.: The chemotactic response of plasmodia of the myxomycete Physarum polycephalum to sugars and related compounds. J. General Microbiol. 108(1), 17–25 (1978) Knowles, D.J.C., Carlile, M.J.: The chemotactic response of plasmodia of the myxomycete Physarum polycephalum to sugars and related compounds. J. General Microbiol. 108(1), 17–25 (1978)
29.
go back to reference Lucarotti, C., Oddo, C.M., Vitiello, N., Carrozza, M.C.: Synthetic and bio-artificial tactile sensing: a review. Sensors 13(2):1435–1466 (2013) Lucarotti, C., Oddo, C.M., Vitiello, N., Carrozza, M.C.: Synthetic and bio-artificial tactile sensing: a review. Sensors 13(2):1435–1466 (2013)
30.
go back to reference Merck, V.: An encyclopaedia of chemicals, drugs and biologicals. In: The Merck Index, pp. 3737 (1995) Merck, V.: An encyclopaedia of chemicals, drugs and biologicals. In: The Merck Index, pp. 3737 (1995)
31.
go back to reference Meyer, R., Stockem, W.: Studies on microplasmodia of Physarum polycephalum V: electrical activity of different types of microplasmodia and macroplasmodia. Cell Biol. Int. Rep. 3(4), 321–330 (1979)CrossRef Meyer, R., Stockem, W.: Studies on microplasmodia of Physarum polycephalum V: electrical activity of different types of microplasmodia and macroplasmodia. Cell Biol. Int. Rep. 3(4), 321–330 (1979)CrossRef
32.
go back to reference Mukai, T., Hirano, S., Kato, Y.: Fast and accurate tactile sensor system for a human-interactive robot. INTECH Open Access Publisher (2008) Mukai, T., Hirano, S., Kato, Y.: Fast and accurate tactile sensor system for a human-interactive robot. INTECH Open Access Publisher (2008)
33.
go back to reference Nakagaki, T., Yamada, H., Ueda, T.: Modulation of cellular rhythm and photoavoidance by oscillatory irradiation in the Physarum plasmodium. Biophys. Chem. 82(1), 23–28 (1999)CrossRef Nakagaki, T., Yamada, H., Ueda, T.: Modulation of cellular rhythm and photoavoidance by oscillatory irradiation in the Physarum plasmodium. Biophys. Chem. 82(1), 23–28 (1999)CrossRef
34.
go back to reference Ohmukai, M., Kami, Y., Matsuura, R.: Electrode for force sensor of conductive rubber (2012) Ohmukai, M., Kami, Y., Matsuura, R.: Electrode for force sensor of conductive rubber (2012)
35.
go back to reference Park, Y.-L., Chen, B.-R., Wood, R.J.: Soft artificial skin with multi-modal sensing capability using embedded liquid conductors. In: Sensors, 2011 IEEE, pp. 81–84. IEEE (2011) Park, Y.-L., Chen, B.-R., Wood, R.J.: Soft artificial skin with multi-modal sensing capability using embedded liquid conductors. In: Sensors, 2011 IEEE, pp. 81–84. IEEE (2011)
36.
go back to reference Park, Y.-L., Majidi, C., Kramer, R., Bérard, P., Wood, R.J.: Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 20(12), 125029 (2010) Park, Y.-L., Majidi, C., Kramer, R., Bérard, P., Wood, R.J.: Hyperelastic pressure sensing with a liquid-embedded elastomer. J. Micromech. Microeng. 20(12), 125029 (2010)
37.
38.
go back to reference Sabah, A., Dakua, I., Kumar, P., Mohammed, W.S., Dutta, J.: Growth of templated gold microwires by self organization of colloids on Aspergillus niger. Digest J. Nanomater. Biostruct. 7, 583–591 (2012) Sabah, A., Dakua, I., Kumar, P., Mohammed, W.S., Dutta, J.: Growth of templated gold microwires by self organization of colloids on Aspergillus niger. Digest J. Nanomater. Biostruct. 7, 583–591 (2012)
39.
go back to reference Sauer, H.W., Babcock, K.L., Rusch, H.P.: Sporulation in Physarum polycephalum: a model system for studies on differentiation. Exp. Cell Res. 57(2), 319–327 (1969)CrossRef Sauer, H.W., Babcock, K.L., Rusch, H.P.: Sporulation in Physarum polycephalum: a model system for studies on differentiation. Exp. Cell Res. 57(2), 319–327 (1969)CrossRef
40.
go back to reference Schreckenbach, T., Walckhoff, B., Verfuerth, C.: Blue-light receptor in a white mutant of Physarum polycephalum mediates inhibition of spherulation and regulation of glucose metabolism. Proc. Natl. Acad. Sci. 78(2), 1009–1013 (1981) Schreckenbach, T., Walckhoff, B., Verfuerth, C.: Blue-light receptor in a white mutant of Physarum polycephalum mediates inhibition of spherulation and regulation of glucose metabolism. Proc. Natl. Acad. Sci. 78(2), 1009–1013 (1981)
41.
go back to reference Starostzik, C., Marwan, W.: A photoreceptor with characteristics of phytochrome triggers sporulation in the true slime mould Physarum polycephalum. FEBS Lett. 370(1), 146–148 (1995)CrossRef Starostzik, C., Marwan, W.: A photoreceptor with characteristics of phytochrome triggers sporulation in the true slime mould Physarum polycephalum. FEBS Lett. 370(1), 146–148 (1995)CrossRef
42.
go back to reference Sun, T., Tsuda, S., Zauner, K.-P., Morgan, H.: Single cell imaging using electrical impedance tomography. In: 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2009. NEMS 2009, pp. 858–863. IEEE (2009) Sun, T., Tsuda, S., Zauner, K.-P., Morgan, H.: Single cell imaging using electrical impedance tomography. In: 4th IEEE International Conference on Nano/Micro Engineered and Molecular Systems, 2009. NEMS 2009, pp. 858–863. IEEE (2009)
43.
go back to reference Sun, T., Tsuda, S., Zauner, K.-P., Morgan, H.: On-chip electrical impedance tomography for imaging biological cells. Biosens. Bioelectron. 25(5), 1109–1115 (2010)CrossRef Sun, T., Tsuda, S., Zauner, K.-P., Morgan, H.: On-chip electrical impedance tomography for imaging biological cells. Biosens. Bioelectron. 25(5), 1109–1115 (2010)CrossRef
44.
go back to reference Tiwana, M.I., Redmond, S.J., Lovell, N.H.: A review of tactile sensing technologies with applications in biomedical engineering. Sensors Actuators A: Phys. 179, 17–31 (2012)CrossRef Tiwana, M.I., Redmond, S.J., Lovell, N.H.: A review of tactile sensing technologies with applications in biomedical engineering. Sensors Actuators A: Phys. 179, 17–31 (2012)CrossRef
46.
go back to reference Ueda, T., Mori, Y., Kobatake, Y.: Patterns in the distribution of intracellular atp concentration in relation to coordination of amoeboid cell behavior in Physarum polycephalum. Exp. Cell Res. 169(1), 191–201 (1987)CrossRef Ueda, T., Mori, Y., Kobatake, Y.: Patterns in the distribution of intracellular atp concentration in relation to coordination of amoeboid cell behavior in Physarum polycephalum. Exp. Cell Res. 169(1), 191–201 (1987)CrossRef
47.
go back to reference Wang, C., Pålsson, L.-O., Batsanov, A.S., Bryce, M.R.: Molecular wires comprising \(\pi \)-extended ethynyl-and butadiynyl-2, 5-diphenyl-1, 3, 4-oxadiazole derivatives: synthesis, redox, structural, and optoelectronic properties. J. Am. Chem. Soc. 128(11), 3789–3799 (2006)CrossRef Wang, C., Pålsson, L.-O., Batsanov, A.S., Bryce, M.R.: Molecular wires comprising \(\pi \)-extended ethynyl-and butadiynyl-2, 5-diphenyl-1, 3, 4-oxadiazole derivatives: synthesis, redox, structural, and optoelectronic properties. J. Am. Chem. Soc. 128(11), 3789–3799 (2006)CrossRef
48.
go back to reference Wang, J., Xu, C., Taya, M., Kuga, Y.: Bio-inspired tactile sensor with arrayed structures based on electroactive polymers. In: Proceedings of the 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, pp. 69271B–69271B (2008) International Society for Optics and Photonics (2008) Wang, J., Xu, C., Taya, M., Kuga, Y.: Bio-inspired tactile sensor with arrayed structures based on electroactive polymers. In: Proceedings of the 15th International Symposium on: Smart Structures and Materials & Nondestructive Evaluation and Health Monitoring, pp. 69271B–69271B (2008) International Society for Optics and Photonics (2008)
49.
go back to reference Wettels, N., Santos, V.J., Johansson, R.S., Loeb, G.E.: Biomimetic tactile sensor array. Adv. Robot. 22(8), 829–849 (2008)CrossRef Wettels, N., Santos, V.J., Johansson, R.S., Loeb, G.E.: Biomimetic tactile sensor array. Adv. Robot. 22(8), 829–849 (2008)CrossRef
50.
go back to reference Wohlfarth-Bottermann, K.E., Block, I.: The pathway of photosensory transduction in Physarum polycephalum. Cell Biol. Int. Rep. 5(4), 365–373 (1981)CrossRef Wohlfarth-Bottermann, K.E., Block, I.: The pathway of photosensory transduction in Physarum polycephalum. Cell Biol. Int. Rep. 5(4), 365–373 (1981)CrossRef
51.
go back to reference Wolf, R., Niemuth, J., Sauer, H.: Thermotaxis and protoplasmic oscillations in Physarum plasmodia analysed in a novel device generating stable linear temperature gradients. Protoplasma 197(1–2), 121–131 (1997)CrossRef Wolf, R., Niemuth, J., Sauer, H.: Thermotaxis and protoplasmic oscillations in Physarum plasmodia analysed in a novel device generating stable linear temperature gradients. Protoplasma 197(1–2), 121–131 (1997)CrossRef
52.
go back to reference Wong, R.D.P., Posner, J.D., Santos, V.J.: Flexible microfluidic normal force sensor skin for tactile feedback. Sensors Actuators A: Phys. 179, 62–69 (2012)CrossRef Wong, R.D.P., Posner, J.D., Santos, V.J.: Flexible microfluidic normal force sensor skin for tactile feedback. Sensors Actuators A: Phys. 179, 62–69 (2012)CrossRef
Metadata
Title
Physarum Wires, Sensors and Oscillators
Author
Andrew Adamatzky
Copyright Year
2016
DOI
https://doi.org/10.1007/978-3-319-26662-6_12

Premium Partner