Skip to main content
Top

2019 | OriginalPaper | Chapter

3. Physical Fundamentals of Heat Conduction During Welding

Author : Victor A. Karkhin

Published in: Thermal Processes in Welding

Publisher: Springer Singapore

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Temperature is a physical quantity that characterizes the degree of body heat. When the system is in the state of thermodynamic equilibrium, the temperatures of all the bodies forming the system are the same.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Argyris, J. H., Szimmat, J., & Willam, K. J. (1982). Computational aspects of welding stress analysis. Computer Methods in Applied Mechanics and Engineering, 33, 635–666. Argyris, J. H., Szimmat, J., & Willam, K. J. (1982). Computational aspects of welding stress analysis. Computer Methods in Applied Mechanics and Engineering, 33, 635–666.
go back to reference Argyris, J. H., Szimmat, J., & Willam, K. J. (1985). Finite element analysis of arc welding processes. Numerical Methods in Heat Transfer, 3, 1–34. Argyris, J. H., Szimmat, J., & Willam, K. J. (1985). Finite element analysis of arc welding processes. Numerical Methods in Heat Transfer, 3, 1–34.
go back to reference Artinov, A., Bachmann, M., & Rethmeier, M. (2018). Equivalent heat source approach in a 3D transient heat transfer simulation of full-penetration high power laser beam welding of thick metal plates. International Journal of Heat and Mass Transfer, 122, 1003–1013. Artinov, A., Bachmann, M., & Rethmeier, M. (2018). Equivalent heat source approach in a 3D transient heat transfer simulation of full-penetration high power laser beam welding of thick metal plates. International Journal of Heat and Mass Transfer, 122, 1003–1013.
go back to reference Bachorski, A., Painter, M. J., Smailes, A. J., & Wahab, M. A. (1999). Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach. Journal of Materials Processing Technology, 92, 405–409. Bachorski, A., Painter, M. J., Smailes, A. J., & Wahab, M. A. (1999). Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach. Journal of Materials Processing Technology, 92, 405–409.
go back to reference Bakir, N., Gumenyuk, A., & Rethmeier, M. (2016). Numerical simulation of solidification crack formation during laser beam welding of austenitic stainless steel under external load. Welding in the World, 60(5), 1001–1008. Bakir, N., Gumenyuk, A., & Rethmeier, M. (2016). Numerical simulation of solidification crack formation during laser beam welding of austenitic stainless steel under external load. Welding in the World, 60(5), 1001–1008.
go back to reference Balasubramanian, K. R., Shanmugam, N. S., Buvanashekaran, G., & Sankaranarayanasamy, K. (2008). Numerical and experimental investigation of laser beam welding of AISI 304 stainless steel sheet. Advances in Production Engineering and Management, 3(2), 93–105. Balasubramanian, K. R., Shanmugam, N. S., Buvanashekaran, G., & Sankaranarayanasamy, K. (2008). Numerical and experimental investigation of laser beam welding of AISI 304 stainless steel sheet. Advances in Production Engineering and Management, 3(2), 93–105.
go back to reference Boley, B. A., & Weiner, J. H. (1960). Theory of thermal stresses (586 pp.). Wiley. Boley, B. A., & Weiner, J. H. (1960). Theory of thermal stresses (586 pp.). Wiley.
go back to reference Carslaw, H. S., & Jaeger, J. C. (1973). Conduction of heat in solids (510 pp.). London: Oxford University Press. Carslaw, H. S., & Jaeger, J. C. (1973). Conduction of heat in solids (510 pp.). London: Oxford University Press.
go back to reference Chukkan, J. R., Vasudevan, M., Muthukumaran, S., Kumar, R. R., & Chandrasekhar, N. (2015). Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation. Journal of Materials Processing Technology, 219, 48–59. Chukkan, J. R., Vasudevan, M., Muthukumaran, S., Kumar, R. R., & Chandrasekhar, N. (2015). Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation. Journal of Materials Processing Technology, 219, 48–59.
go back to reference Frolov, V. V. (1970). Theoretical principles of welding (592 pp.). Moscow: Vysshaya Shkola (in Russian). Frolov, V. V. (1970). Theoretical principles of welding (592 pp.). Moscow: Vysshaya Shkola (in Russian).
go back to reference Gabriel, F., Ayrault, D., Fontes, A., Roatta, J. L., & Raynaud, M. (2007). Global method for estimation of heat source parameters dedicated to narrow gap GTA welding. In H. Cerjak, H. K. D. H. Bhadeshia & E. Kozenschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 891–906). Graz: Verlag der Technischen Universitaet Graz. Gabriel, F., Ayrault, D., Fontes, A., Roatta, J. L., & Raynaud, M. (2007). Global method for estimation of heat source parameters dedicated to narrow gap GTA welding. In H. Cerjak, H. K. D. H. Bhadeshia & E. Kozenschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 891–906). Graz: Verlag der Technischen Universitaet Graz.
go back to reference Goldak, J., Chakravarti, A., & Bibby, M. (1984). A new finite element model for welding heat sources. Metallurgical Transactions B, 15B(6), 299–305. Goldak, J., Chakravarti, A., & Bibby, M. (1984). A new finite element model for welding heat sources. Metallurgical Transactions B, 15B(6), 299–305.
go back to reference Goldak, J. A., & Akhlaghi, M. (2005). Computational welding mechanics (321 pp.). Springer. Goldak, J. A., & Akhlaghi, M. (2005). Computational welding mechanics (321 pp.). Springer.
go back to reference Karkhin, V. A. (1990). Principles of heat transfer in weldments (100 pp.). Leningrad: Leningrad State Technical University Publishing (in Russian). Karkhin, V. A. (1990). Principles of heat transfer in weldments (100 pp.). Leningrad: Leningrad State Technical University Publishing (in Russian).
go back to reference Karkhin, V. A., Ilin, A. S., Ploshikhin, V. V., & Prikhodovsky, A. A. (2004). Effect of heat of aluminium alloy melting on shape and sizes of weld pool. Paton Welding Journal, (1), 2–7. Karkhin, V. A., Ilin, A. S., Ploshikhin, V. V., & Prikhodovsky, A. A. (2004). Effect of heat of aluminium alloy melting on shape and sizes of weld pool. Paton Welding Journal, (1), 2–7.
go back to reference Karkhin, V. A., Ivanov, S. Yu., Homich, P. N., & Rajamaki, P. (2010). Analysis of solute macro- and microsegregation in fusion welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 155–175). Graz: Verlag der Technischen Universitaet Graz. Karkhin, V. A., Ivanov, S. Yu., Homich, P. N., & Rajamaki, P. (2010). Analysis of solute macro- and microsegregation in fusion welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 155–175). Graz: Verlag der Technischen Universitaet Graz.
go back to reference Karkhin, V. A., Khomich, P. N., & Michailov, V. G. (2006). Prediction of microstructure and mechanical properties of weld metal with consideration for real weld geometry. In W. Lucas & V. I. Makhnenko (Eds.), Proceedings of Joint International Conference “Computer Technology in Welding and Manufacturing (16th International Conference) and Information Technologies in Welding and Related Processes (3rd International Conference)”, Kiev (pp. 162–166). Karkhin, V. A., Khomich, P. N., & Michailov, V. G. (2006). Prediction of microstructure and mechanical properties of weld metal with consideration for real weld geometry. In W. Lucas & V. I. Makhnenko (Eds.), Proceedings of Joint International Conference “Computer Technology in Welding and Manufacturing (16th International Conference) and Information Technologies in Welding and Related Processes (3rd International Conference)”, Kiev (pp. 162–166).
go back to reference Karkhin, V. A., Homich, P. H., & Michailov, V. G. (2007a). Analytical-experimental technique for calculating the temperature fields in laser welding. In 11th NOLAMP Conference in Laser Processing of Materials, Lappeenranta, Finland (pp. 21–27). Karkhin, V. A., Homich, P. H., & Michailov, V. G. (2007a). Analytical-experimental technique for calculating the temperature fields in laser welding. In 11th NOLAMP Conference in Laser Processing of Materials, Lappeenranta, Finland (pp. 21–27).
go back to reference Karkhin, V. A., Khomich, P. N., & Michailov, V. G. (2007b). Models for volume heat sources and functional-analytical technique for calculating the temperature fields in butt welding . In H. Cerjak, H. K. D. H. Bhadeshia & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 819–834). Graz: Verlag der Technischen Universitaet Graz. Karkhin, V. A., Khomich, P. N., & Michailov, V. G. (2007b). Models for volume heat sources and functional-analytical technique for calculating the temperature fields in butt welding . In H. Cerjak, H. K. D. H. Bhadeshia & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 819–834). Graz: Verlag der Technischen Universitaet Graz.
go back to reference Karkhin, V. A., Khomich, P. N., Ossenbrink, R., & Michailov, V. G. (2007c). Calculation-experimental method for the determination of the temperature field in laser welding. Welding International, 21(5), 391–395. Karkhin, V. A., Khomich, P. N., Ossenbrink, R., & Michailov, V. G. (2007c). Calculation-experimental method for the determination of the temperature field in laser welding. Welding International, 21(5), 391–395.
go back to reference Karkhin, V. A., Pittner, A., Schwenk, C., & Rethmeier, M. (2010a). Heat source models in simulation of heat flow in fusion welding. In Proceedings of 5th International Conference “Mathematical Modelling and Information Technologies in Welding and Related Processes” (pp. 56–60). Crimea, 25–28 May 2010. Karkhin, V. A., Pittner, A., Schwenk, C., & Rethmeier, M. (2010a). Heat source models in simulation of heat flow in fusion welding. In Proceedings of 5th International Conference “Mathematical Modelling and Information Technologies in Welding and Related Processes” (pp. 56–60). Crimea, 25–28 May 2010.
go back to reference Karkhin, V. A., Homich, P. N., & Ivanov, S. Yu. (2010b). Heat source models for prediction of temperature fields in fusion welding. In Proceedings of the Tula State University. Technical Sciences, Part 1 (Vol. 4, pp. 241–254). Tula: Tula State University Publishing (in Russian). Karkhin, V. A., Homich, P. N., & Ivanov, S. Yu. (2010b). Heat source models for prediction of temperature fields in fusion welding. In Proceedings of the Tula State University. Technical Sciences, Part 1 (Vol. 4, pp. 241–254). Tula: Tula State University Publishing (in Russian).
go back to reference Karkhin, V. A., Pesch, H. J., Ilin, A. S., Prikhodovsky, A. A., Plochikhine, V. V., Makhutin, M. V., & Zoch, H.-W. (2005). Effects of latent heat of fusion on thermal processes during welding. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 7, pp. 39–62). Graz: Verlag der Technischen Universitaet Graz. Karkhin, V. A., Pesch, H. J., Ilin, A. S., Prikhodovsky, A. A., Plochikhine, V. V., Makhutin, M. V., & Zoch, H.-W. (2005). Effects of latent heat of fusion on thermal processes during welding. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 7, pp. 39–62). Graz: Verlag der Technischen Universitaet Graz.
go back to reference Kazimirov, A. A., Nedoseka, A. Ya., Lobanov, A. M., & Radchenko I. S. (1968). Calculation of temperature fields in fusion welding of plates (832 pp.). Kiev: Naukova dumka (in Russian). Kazimirov, A. A., Nedoseka, A. Ya., Lobanov, A. M., & Radchenko I. S. (1968). Calculation of temperature fields in fusion welding of plates (832 pp.). Kiev: Naukova dumka (in Russian).
go back to reference Luikov, A. (1968). Analytical heat conduction theory (702 pp.). Elsevier. Luikov, A. (1968). Analytical heat conduction theory (702 pp.). Elsevier.
go back to reference Meyermanov, A. M. (1986). Stefan problem (239 pp.). Novosibirsk: Nauka (in Russian). Meyermanov, A. M. (1986). Stefan problem (239 pp.). Novosibirsk: Nauka (in Russian).
go back to reference Nedoseka, A. Ya. (1988). Fundamentals of calculating welded structures (263 pp.). Kiev: Vishcha Shkola Publishing (in Russian). Nedoseka, A. Ya. (1988). Fundamentals of calculating welded structures (263 pp.). Kiev: Vishcha Shkola Publishing (in Russian).
go back to reference Radaj, D. (1992). Heat effects of welding. Temperature field, residual stress, distortion (348 pp.). Berlin: Springer.CrossRef Radaj, D. (1992). Heat effects of welding. Temperature field, residual stress, distortion (348 pp.). Berlin: Springer.CrossRef
go back to reference Radaj, D. (2003). Welding residual stresses and distortion. Calculation and measurement (397 pp.). Duesseldorf: DVS. Radaj, D. (2003). Welding residual stresses and distortion. Calculation and measurement (397 pp.). Duesseldorf: DVS.
go back to reference Ravi Vishnu, P., & Easterling, K. E. (1993). Phenomenological modelling of heat flow and microstructural changes in pulsed GTA welds in a quenched and tempered steel. In H. Cerjak & K. Easterling (Eds.), Mathematical modelling of weld phenomena (pp. 241–299). London: The Institute of Materials. Ravi Vishnu, P., & Easterling, K. E. (1993). Phenomenological modelling of heat flow and microstructural changes in pulsed GTA welds in a quenched and tempered steel. In H. Cerjak & K. Easterling (Eds.), Mathematical modelling of weld phenomena (pp. 241–299). London: The Institute of Materials.
go back to reference Rykalin, N. N. (1951). Calculation of heat flow in welding. (337 pp.) (Z. Paley & C. M. Adams, Jr., Trans.) . Moscow. Rykalin, N. N. (1951). Calculation of heat flow in welding. (337 pp.) (Z. Paley & C. M. Adams, Jr., Trans.) . Moscow.
go back to reference Rykalin, N. N. (1957). Berechnung der Waermevorgaenge beim Schweissen (326 pp.). Berlin: VEB Verlag Technik (in German). Rykalin, N. N. (1957). Berechnung der Waermevorgaenge beim Schweissen (326 pp.). Berlin: VEB Verlag Technik (in German).
go back to reference Shanmugam, N. S., Buvanashekaran, G., Sankaranarayanasamy, K., & Kumar, S. R. (2010). A transient finite element simulation of the temperature and bead profiles of T-joint laser welds. Materials and Design, 31(9), 4528–4542. Shanmugam, N. S., Buvanashekaran, G., Sankaranarayanasamy, K., & Kumar, S. R. (2010). A transient finite element simulation of the temperature and bead profiles of T-joint laser welds. Materials and Design, 31(9), 4528–4542.
go back to reference Yadaiah, N., & Bag, S. (2014). Development of egg-configuration heat source model in numerical simulation of autogenous fusion welding process. International Journal of Thermal Sciences, 86, 125–138. Yadaiah, N., & Bag, S. (2014). Development of egg-configuration heat source model in numerical simulation of autogenous fusion welding process. International Journal of Thermal Sciences, 86, 125–138.
go back to reference Ziegler, H. (1983). An introduction to thermomechanics (2nd ed.) (355 pp.). Amsterdam: North–Holland. Ziegler, H. (1983). An introduction to thermomechanics (2nd ed.) (355 pp.). Amsterdam: North–Holland.
Metadata
Title
Physical Fundamentals of Heat Conduction During Welding
Author
Victor A. Karkhin
Copyright Year
2019
Publisher
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-5965-1_3

Premium Partners