Skip to main content

2019 | OriginalPaper | Buchkapitel

3. Physical Fundamentals of Heat Conduction During Welding

verfasst von : Victor A. Karkhin

Erschienen in: Thermal Processes in Welding

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Temperature is a physical quantity that characterizes the degree of body heat. When the system is in the state of thermodynamic equilibrium, the temperatures of all the bodies forming the system are the same.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Argyris, J. H., Szimmat, J., & Willam, K. J. (1982). Computational aspects of welding stress analysis. Computer Methods in Applied Mechanics and Engineering, 33, 635–666. Argyris, J. H., Szimmat, J., & Willam, K. J. (1982). Computational aspects of welding stress analysis. Computer Methods in Applied Mechanics and Engineering, 33, 635–666.
Zurück zum Zitat Argyris, J. H., Szimmat, J., & Willam, K. J. (1985). Finite element analysis of arc welding processes. Numerical Methods in Heat Transfer, 3, 1–34. Argyris, J. H., Szimmat, J., & Willam, K. J. (1985). Finite element analysis of arc welding processes. Numerical Methods in Heat Transfer, 3, 1–34.
Zurück zum Zitat Artinov, A., Bachmann, M., & Rethmeier, M. (2018). Equivalent heat source approach in a 3D transient heat transfer simulation of full-penetration high power laser beam welding of thick metal plates. International Journal of Heat and Mass Transfer, 122, 1003–1013. Artinov, A., Bachmann, M., & Rethmeier, M. (2018). Equivalent heat source approach in a 3D transient heat transfer simulation of full-penetration high power laser beam welding of thick metal plates. International Journal of Heat and Mass Transfer, 122, 1003–1013.
Zurück zum Zitat Bachorski, A., Painter, M. J., Smailes, A. J., & Wahab, M. A. (1999). Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach. Journal of Materials Processing Technology, 92, 405–409. Bachorski, A., Painter, M. J., Smailes, A. J., & Wahab, M. A. (1999). Finite-element prediction of distortion during gas metal arc welding using the shrinkage volume approach. Journal of Materials Processing Technology, 92, 405–409.
Zurück zum Zitat Bakir, N., Gumenyuk, A., & Rethmeier, M. (2016). Numerical simulation of solidification crack formation during laser beam welding of austenitic stainless steel under external load. Welding in the World, 60(5), 1001–1008. Bakir, N., Gumenyuk, A., & Rethmeier, M. (2016). Numerical simulation of solidification crack formation during laser beam welding of austenitic stainless steel under external load. Welding in the World, 60(5), 1001–1008.
Zurück zum Zitat Balasubramanian, K. R., Shanmugam, N. S., Buvanashekaran, G., & Sankaranarayanasamy, K. (2008). Numerical and experimental investigation of laser beam welding of AISI 304 stainless steel sheet. Advances in Production Engineering and Management, 3(2), 93–105. Balasubramanian, K. R., Shanmugam, N. S., Buvanashekaran, G., & Sankaranarayanasamy, K. (2008). Numerical and experimental investigation of laser beam welding of AISI 304 stainless steel sheet. Advances in Production Engineering and Management, 3(2), 93–105.
Zurück zum Zitat Boley, B. A., & Weiner, J. H. (1960). Theory of thermal stresses (586 pp.). Wiley. Boley, B. A., & Weiner, J. H. (1960). Theory of thermal stresses (586 pp.). Wiley.
Zurück zum Zitat Carslaw, H. S., & Jaeger, J. C. (1973). Conduction of heat in solids (510 pp.). London: Oxford University Press. Carslaw, H. S., & Jaeger, J. C. (1973). Conduction of heat in solids (510 pp.). London: Oxford University Press.
Zurück zum Zitat Chukkan, J. R., Vasudevan, M., Muthukumaran, S., Kumar, R. R., & Chandrasekhar, N. (2015). Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation. Journal of Materials Processing Technology, 219, 48–59. Chukkan, J. R., Vasudevan, M., Muthukumaran, S., Kumar, R. R., & Chandrasekhar, N. (2015). Simulation of laser butt welding of AISI 316L stainless steel sheet using various heat sources and experimental validation. Journal of Materials Processing Technology, 219, 48–59.
Zurück zum Zitat Frolov, V. V. (1970). Theoretical principles of welding (592 pp.). Moscow: Vysshaya Shkola (in Russian). Frolov, V. V. (1970). Theoretical principles of welding (592 pp.). Moscow: Vysshaya Shkola (in Russian).
Zurück zum Zitat Gabriel, F., Ayrault, D., Fontes, A., Roatta, J. L., & Raynaud, M. (2007). Global method for estimation of heat source parameters dedicated to narrow gap GTA welding. In H. Cerjak, H. K. D. H. Bhadeshia & E. Kozenschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 891–906). Graz: Verlag der Technischen Universitaet Graz. Gabriel, F., Ayrault, D., Fontes, A., Roatta, J. L., & Raynaud, M. (2007). Global method for estimation of heat source parameters dedicated to narrow gap GTA welding. In H. Cerjak, H. K. D. H. Bhadeshia & E. Kozenschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 891–906). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Goldak, J., Chakravarti, A., & Bibby, M. (1984). A new finite element model for welding heat sources. Metallurgical Transactions B, 15B(6), 299–305. Goldak, J., Chakravarti, A., & Bibby, M. (1984). A new finite element model for welding heat sources. Metallurgical Transactions B, 15B(6), 299–305.
Zurück zum Zitat Goldak, J. A., & Akhlaghi, M. (2005). Computational welding mechanics (321 pp.). Springer. Goldak, J. A., & Akhlaghi, M. (2005). Computational welding mechanics (321 pp.). Springer.
Zurück zum Zitat Karkhin, V. A. (1990). Principles of heat transfer in weldments (100 pp.). Leningrad: Leningrad State Technical University Publishing (in Russian). Karkhin, V. A. (1990). Principles of heat transfer in weldments (100 pp.). Leningrad: Leningrad State Technical University Publishing (in Russian).
Zurück zum Zitat Karkhin, V. A., Ilin, A. S., Ploshikhin, V. V., & Prikhodovsky, A. A. (2004). Effect of heat of aluminium alloy melting on shape and sizes of weld pool. Paton Welding Journal, (1), 2–7. Karkhin, V. A., Ilin, A. S., Ploshikhin, V. V., & Prikhodovsky, A. A. (2004). Effect of heat of aluminium alloy melting on shape and sizes of weld pool. Paton Welding Journal, (1), 2–7.
Zurück zum Zitat Karkhin, V. A., Ivanov, S. Yu., Homich, P. N., & Rajamaki, P. (2010). Analysis of solute macro- and microsegregation in fusion welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 155–175). Graz: Verlag der Technischen Universitaet Graz. Karkhin, V. A., Ivanov, S. Yu., Homich, P. N., & Rajamaki, P. (2010). Analysis of solute macro- and microsegregation in fusion welding. In H. Cerjak & N. Enzinger (Eds.), Mathematical modelling of weld phenomena (Vol. 9, pp. 155–175). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Karkhin, V. A., Khomich, P. N., & Michailov, V. G. (2006). Prediction of microstructure and mechanical properties of weld metal with consideration for real weld geometry. In W. Lucas & V. I. Makhnenko (Eds.), Proceedings of Joint International Conference “Computer Technology in Welding and Manufacturing (16th International Conference) and Information Technologies in Welding and Related Processes (3rd International Conference)”, Kiev (pp. 162–166). Karkhin, V. A., Khomich, P. N., & Michailov, V. G. (2006). Prediction of microstructure and mechanical properties of weld metal with consideration for real weld geometry. In W. Lucas & V. I. Makhnenko (Eds.), Proceedings of Joint International Conference “Computer Technology in Welding and Manufacturing (16th International Conference) and Information Technologies in Welding and Related Processes (3rd International Conference)”, Kiev (pp. 162–166).
Zurück zum Zitat Karkhin, V. A., Homich, P. H., & Michailov, V. G. (2007a). Analytical-experimental technique for calculating the temperature fields in laser welding. In 11th NOLAMP Conference in Laser Processing of Materials, Lappeenranta, Finland (pp. 21–27). Karkhin, V. A., Homich, P. H., & Michailov, V. G. (2007a). Analytical-experimental technique for calculating the temperature fields in laser welding. In 11th NOLAMP Conference in Laser Processing of Materials, Lappeenranta, Finland (pp. 21–27).
Zurück zum Zitat Karkhin, V. A., Khomich, P. N., & Michailov, V. G. (2007b). Models for volume heat sources and functional-analytical technique for calculating the temperature fields in butt welding . In H. Cerjak, H. K. D. H. Bhadeshia & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 819–834). Graz: Verlag der Technischen Universitaet Graz. Karkhin, V. A., Khomich, P. N., & Michailov, V. G. (2007b). Models for volume heat sources and functional-analytical technique for calculating the temperature fields in butt welding . In H. Cerjak, H. K. D. H. Bhadeshia & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 8, pp. 819–834). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Karkhin, V. A., Khomich, P. N., Ossenbrink, R., & Michailov, V. G. (2007c). Calculation-experimental method for the determination of the temperature field in laser welding. Welding International, 21(5), 391–395. Karkhin, V. A., Khomich, P. N., Ossenbrink, R., & Michailov, V. G. (2007c). Calculation-experimental method for the determination of the temperature field in laser welding. Welding International, 21(5), 391–395.
Zurück zum Zitat Karkhin, V. A., Pittner, A., Schwenk, C., & Rethmeier, M. (2010a). Heat source models in simulation of heat flow in fusion welding. In Proceedings of 5th International Conference “Mathematical Modelling and Information Technologies in Welding and Related Processes” (pp. 56–60). Crimea, 25–28 May 2010. Karkhin, V. A., Pittner, A., Schwenk, C., & Rethmeier, M. (2010a). Heat source models in simulation of heat flow in fusion welding. In Proceedings of 5th International Conference “Mathematical Modelling and Information Technologies in Welding and Related Processes” (pp. 56–60). Crimea, 25–28 May 2010.
Zurück zum Zitat Karkhin, V. A., Homich, P. N., & Ivanov, S. Yu. (2010b). Heat source models for prediction of temperature fields in fusion welding. In Proceedings of the Tula State University. Technical Sciences, Part 1 (Vol. 4, pp. 241–254). Tula: Tula State University Publishing (in Russian). Karkhin, V. A., Homich, P. N., & Ivanov, S. Yu. (2010b). Heat source models for prediction of temperature fields in fusion welding. In Proceedings of the Tula State University. Technical Sciences, Part 1 (Vol. 4, pp. 241–254). Tula: Tula State University Publishing (in Russian).
Zurück zum Zitat Karkhin, V. A., Pesch, H. J., Ilin, A. S., Prikhodovsky, A. A., Plochikhine, V. V., Makhutin, M. V., & Zoch, H.-W. (2005). Effects of latent heat of fusion on thermal processes during welding. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 7, pp. 39–62). Graz: Verlag der Technischen Universitaet Graz. Karkhin, V. A., Pesch, H. J., Ilin, A. S., Prikhodovsky, A. A., Plochikhine, V. V., Makhutin, M. V., & Zoch, H.-W. (2005). Effects of latent heat of fusion on thermal processes during welding. In H. Cerjak, H. K. D. H. Bhadeshia, & E. Kozeschnik (Eds.), Mathematical modelling of weld phenomena (Vol. 7, pp. 39–62). Graz: Verlag der Technischen Universitaet Graz.
Zurück zum Zitat Kazimirov, A. A., Nedoseka, A. Ya., Lobanov, A. M., & Radchenko I. S. (1968). Calculation of temperature fields in fusion welding of plates (832 pp.). Kiev: Naukova dumka (in Russian). Kazimirov, A. A., Nedoseka, A. Ya., Lobanov, A. M., & Radchenko I. S. (1968). Calculation of temperature fields in fusion welding of plates (832 pp.). Kiev: Naukova dumka (in Russian).
Zurück zum Zitat Luikov, A. (1968). Analytical heat conduction theory (702 pp.). Elsevier. Luikov, A. (1968). Analytical heat conduction theory (702 pp.). Elsevier.
Zurück zum Zitat Meyermanov, A. M. (1986). Stefan problem (239 pp.). Novosibirsk: Nauka (in Russian). Meyermanov, A. M. (1986). Stefan problem (239 pp.). Novosibirsk: Nauka (in Russian).
Zurück zum Zitat Nedoseka, A. Ya. (1988). Fundamentals of calculating welded structures (263 pp.). Kiev: Vishcha Shkola Publishing (in Russian). Nedoseka, A. Ya. (1988). Fundamentals of calculating welded structures (263 pp.). Kiev: Vishcha Shkola Publishing (in Russian).
Zurück zum Zitat Radaj, D. (1992). Heat effects of welding. Temperature field, residual stress, distortion (348 pp.). Berlin: Springer.CrossRef Radaj, D. (1992). Heat effects of welding. Temperature field, residual stress, distortion (348 pp.). Berlin: Springer.CrossRef
Zurück zum Zitat Radaj, D. (2003). Welding residual stresses and distortion. Calculation and measurement (397 pp.). Duesseldorf: DVS. Radaj, D. (2003). Welding residual stresses and distortion. Calculation and measurement (397 pp.). Duesseldorf: DVS.
Zurück zum Zitat Ravi Vishnu, P., & Easterling, K. E. (1993). Phenomenological modelling of heat flow and microstructural changes in pulsed GTA welds in a quenched and tempered steel. In H. Cerjak & K. Easterling (Eds.), Mathematical modelling of weld phenomena (pp. 241–299). London: The Institute of Materials. Ravi Vishnu, P., & Easterling, K. E. (1993). Phenomenological modelling of heat flow and microstructural changes in pulsed GTA welds in a quenched and tempered steel. In H. Cerjak & K. Easterling (Eds.), Mathematical modelling of weld phenomena (pp. 241–299). London: The Institute of Materials.
Zurück zum Zitat Rykalin, N. N. (1951). Calculation of heat flow in welding. (337 pp.) (Z. Paley & C. M. Adams, Jr., Trans.) . Moscow. Rykalin, N. N. (1951). Calculation of heat flow in welding. (337 pp.) (Z. Paley & C. M. Adams, Jr., Trans.) . Moscow.
Zurück zum Zitat Rykalin, N. N. (1957). Berechnung der Waermevorgaenge beim Schweissen (326 pp.). Berlin: VEB Verlag Technik (in German). Rykalin, N. N. (1957). Berechnung der Waermevorgaenge beim Schweissen (326 pp.). Berlin: VEB Verlag Technik (in German).
Zurück zum Zitat Shanmugam, N. S., Buvanashekaran, G., Sankaranarayanasamy, K., & Kumar, S. R. (2010). A transient finite element simulation of the temperature and bead profiles of T-joint laser welds. Materials and Design, 31(9), 4528–4542. Shanmugam, N. S., Buvanashekaran, G., Sankaranarayanasamy, K., & Kumar, S. R. (2010). A transient finite element simulation of the temperature and bead profiles of T-joint laser welds. Materials and Design, 31(9), 4528–4542.
Zurück zum Zitat Yadaiah, N., & Bag, S. (2014). Development of egg-configuration heat source model in numerical simulation of autogenous fusion welding process. International Journal of Thermal Sciences, 86, 125–138. Yadaiah, N., & Bag, S. (2014). Development of egg-configuration heat source model in numerical simulation of autogenous fusion welding process. International Journal of Thermal Sciences, 86, 125–138.
Zurück zum Zitat Ziegler, H. (1983). An introduction to thermomechanics (2nd ed.) (355 pp.). Amsterdam: North–Holland. Ziegler, H. (1983). An introduction to thermomechanics (2nd ed.) (355 pp.). Amsterdam: North–Holland.
Metadaten
Titel
Physical Fundamentals of Heat Conduction During Welding
verfasst von
Victor A. Karkhin
Copyright-Jahr
2019
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-13-5965-1_3

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.