Skip to main content
Top
Published in: Cellulose 2/2019

11-11-2018 | Original Paper

Physical nanochitin/microemulsion composite hydrogels for hydrophobic Nile Red release under in vitro physiological conditions

Authors: Zhiguo Wang, Rong Wang, Pengbo Xu, Juan Yu, Liang Liu, Yimin Fan

Published in: Cellulose | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

A physical composite nanochitin/microemulsion (NCh/ME) hydrogel for a prolonged release of hydrophobic compounds (drugs) under in vitro physiological conditions was investigated. A strong physical hydrogel was prepared by an alkali gas phase coagulation bath composting NCh with an oil in water ME in which a hydrophobic dye, Nile Red (NR), was embedded to simulate a drug release process. Different release conditions, such as concentration of NCh, diameter of ME, temperature and specific surface areas, were studied. The results showed that the NCh/ME composite hydrogel effectively encapsulated NR with a prolonged release period of 60 h in phosphate-buffered saline (PBS pH 7.4, similar to physiological conditions), which demonstrated the significance of NCh/ME composite hydrogels for hydrophobic compound (drug) delivery.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Arora S, Ali J, Ahuja A et al (2005) Floating drug delivery systems: a review. AAPS PharmSciTech 6(3):E372–E390CrossRef Arora S, Ali J, Ahuja A et al (2005) Floating drug delivery systems: a review. AAPS PharmSciTech 6(3):E372–E390CrossRef
go back to reference Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99CrossRef Bhattarai N, Gunn J, Zhang M (2010) Chitosan-based hydrogels for controlled, localized drug delivery. Adv Drug Deliv Rev 62(1):83–99CrossRef
go back to reference Chang C, Chen S, Zhang L (2011) Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J Mater Chem 21(11):3865–3871CrossRef Chang C, Chen S, Zhang L (2011) Novel hydrogels prepared via direct dissolution of chitin at low temperature: structure and biocompatibility. J Mater Chem 21(11):3865–3871CrossRef
go back to reference Chen C, Yano H, Li D et al (2015) Preparation of high-strength α-chitin nanofiber-based hydrogels under mild conditions. Cellulose 22(4):2543–2550CrossRef Chen C, Yano H, Li D et al (2015) Preparation of high-strength α-chitin nanofiber-based hydrogels under mild conditions. Cellulose 22(4):2543–2550CrossRef
go back to reference Delmar K, Bianco-Peled H (2016) Composite chitosan hydrogels for extended release of hydrophobic drugs. Carbohydr Polym 136:570–580CrossRef Delmar K, Bianco-Peled H (2016) Composite chitosan hydrogels for extended release of hydrophobic drugs. Carbohydr Polym 136:570–580CrossRef
go back to reference Fan Y, Saito T, Isogai A (2010) Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization. Carbohydr Polym 79(4):1046–1051CrossRef Fan Y, Saito T, Isogai A (2010) Individual chitin nano-whiskers prepared from partially deacetylated α-chitin by fibril surface cationization. Carbohydr Polym 79(4):1046–1051CrossRef
go back to reference Focher B, Naggi A, Torri G et al (1992) Structural differences between chitin polymorphs and their precipitates from solutions-evidence from CP-MAS 13C-NMR, FT-IR and FT-Raman spectroscopy. Carbohydr Polym 17(2):97–102CrossRef Focher B, Naggi A, Torri G et al (1992) Structural differences between chitin polymorphs and their precipitates from solutions-evidence from CP-MAS 13C-NMR, FT-IR and FT-Raman spectroscopy. Carbohydr Polym 17(2):97–102CrossRef
go back to reference Guillot F, Domard A (2005) Composition for cutaneous repair and cicatrization comprising exclusively a true physical hydrogel of chitosan. U.S. patent application 10/915, 621.2-24 Guillot F, Domard A (2005) Composition for cutaneous repair and cicatrization comprising exclusively a true physical hydrogel of chitosan. U.S. patent application 10/915, 621.2-24
go back to reference Hu X, Tang Y, Wang Q et al (2011) Rheological behaviour of chitin in NaOH/urea aqueous solution. Carbohydr Polym 83(3):1128–1133CrossRef Hu X, Tang Y, Wang Q et al (2011) Rheological behaviour of chitin in NaOH/urea aqueous solution. Carbohydr Polym 83(3):1128–1133CrossRef
go back to reference Jayakumar R, Menon D, Manzoor K et al (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82(2):227–232CrossRef Jayakumar R, Menon D, Manzoor K et al (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82(2):227–232CrossRef
go back to reference Josef E, Barat K, Barsht I et al (2013) Composite hydrogels as a vehicle for releasing drugs with a wide range of hydrophobicities. Acta Biomater 9(11):8815–8822CrossRef Josef E, Barat K, Barsht I et al (2013) Composite hydrogels as a vehicle for releasing drugs with a wide range of hydrophobicities. Acta Biomater 9(11):8815–8822CrossRef
go back to reference Khurma JR, Nand AV (2008) Temperature and pH sensitive hydrogels composed of chitosan and poly(ethylene glycol). Polym Bull 59(6):805–812CrossRef Khurma JR, Nand AV (2008) Temperature and pH sensitive hydrogels composed of chitosan and poly(ethylene glycol). Polym Bull 59(6):805–812CrossRef
go back to reference Klossner RR, Queen HA, Coughlin AJ et al (2008) Correlation of chitosan’s rheological properties and its ability to electrospin. Biomacromolecules 9(10):2947–2953CrossRef Klossner RR, Queen HA, Coughlin AJ et al (2008) Correlation of chitosan’s rheological properties and its ability to electrospin. Biomacromolecules 9(10):2947–2953CrossRef
go back to reference Kogan A, Garti N (2006) Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci 123:369–385CrossRef Kogan A, Garti N (2006) Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci 123:369–385CrossRef
go back to reference Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45(1):89–121CrossRef Lawrence MJ, Rees GD (2000) Microemulsion-based media as novel drug delivery systems. Adv Drug Deliv Rev 45(1):89–121CrossRef
go back to reference Li L, Lin Z, Yang X et al (2009) A novel cellulose hydrogel prepared from its ionic liquid solution. Chin Sci Bull 54(9):1622–1625 Li L, Lin Z, Yang X et al (2009) A novel cellulose hydrogel prepared from its ionic liquid solution. Chin Sci Bull 54(9):1622–1625
go back to reference Liu J, Zhang L, Yang Z et al (2011) Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. Int J Nanomed 6:2143CrossRef Liu J, Zhang L, Yang Z et al (2011) Controlled release of paclitaxel from a self-assembling peptide hydrogel formed in situ and antitumor study in vitro. Int J Nanomed 6:2143CrossRef
go back to reference Liu L, Lv H, Jiang J et al (2015a) Reinforced chitosan beads by chitin nanofibers for the immobilization of β-glucosidase. RSC Adv 5(113):93331–93336CrossRef Liu L, Lv H, Jiang J et al (2015a) Reinforced chitosan beads by chitin nanofibers for the immobilization of β-glucosidase. RSC Adv 5(113):93331–93336CrossRef
go back to reference Liu Y, Gu J, Zhang J et al (2015b) LiFePO4 nanoparticles growth with preferential (010) face modulated by Tween-80. RSC Adv 5(13):9745–9751CrossRef Liu Y, Gu J, Zhang J et al (2015b) LiFePO4 nanoparticles growth with preferential (010) face modulated by Tween-80. RSC Adv 5(13):9745–9751CrossRef
go back to reference Liu L, Wang R, Yu J et al (2016) Robust self-standing chitin nanofiber/nanowhisker hydrogels with designed surface charges and ultralow mass content via gas phase coagulation. Biomacromolecules 17(11):3773–3781CrossRef Liu L, Wang R, Yu J et al (2016) Robust self-standing chitin nanofiber/nanowhisker hydrogels with designed surface charges and ultralow mass content via gas phase coagulation. Biomacromolecules 17(11):3773–3781CrossRef
go back to reference Mir VG, Heinämäki J, Antikainen O et al (2008) Direct compression properties of chitin and chitosan. Eur J Pharm Biopharm 69(3):964–968CrossRef Mir VG, Heinämäki J, Antikainen O et al (2008) Direct compression properties of chitin and chitosan. Eur J Pharm Biopharm 69(3):964–968CrossRef
go back to reference Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678CrossRef Pillai CKS, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678CrossRef
go back to reference Rwei SP, Lyu MS, Wu P et al (2009) Sol/gel transition and liquid crystal transition of HPC in ionic liquid. Cellulose 16(1):9–17CrossRef Rwei SP, Lyu MS, Wu P et al (2009) Sol/gel transition and liquid crystal transition of HPC in ionic liquid. Cellulose 16(1):9–17CrossRef
go back to reference Sriupayo J, Supaphol P, Blackwell J et al (2005) Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydr Polym 62(2):130–136CrossRef Sriupayo J, Supaphol P, Blackwell J et al (2005) Preparation and characterization of α-chitin whisker-reinforced chitosan nanocomposite films with or without heat treatment. Carbohydr Polym 62(2):130–136CrossRef
go back to reference Tenjarla S (1999) Microemulsions: an overview and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst 16(5):461–521CrossRef Tenjarla S (1999) Microemulsions: an overview and pharmaceutical applications. Crit Rev Ther Drug Carrier Syst 16(5):461–521CrossRef
go back to reference Wang R, Liu L, Yu J et al (2017) Versatile protonic acid mediated preparation of partially deacetylated chitin nanofibers/nanowhiskers and their assembling of nano-structured hydro- and aero-gels. Cellulose 12:1–12 Wang R, Liu L, Yu J et al (2017) Versatile protonic acid mediated preparation of partially deacetylated chitin nanofibers/nanowhiskers and their assembling of nano-structured hydro- and aero-gels. Cellulose 12:1–12
Metadata
Title
Physical nanochitin/microemulsion composite hydrogels for hydrophobic Nile Red release under in vitro physiological conditions
Authors
Zhiguo Wang
Rong Wang
Pengbo Xu
Juan Yu
Liang Liu
Yimin Fan
Publication date
11-11-2018
Publisher
Springer Netherlands
Published in
Cellulose / Issue 2/2019
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2119-2

Other articles of this Issue 2/2019

Cellulose 2/2019 Go to the issue