Skip to main content
Top
Published in: Cellulose 2/2019

10-11-2018 | Original Paper

A high-performance all-solid-state yarn supercapacitor based on polypyrrole-coated stainless steel/cotton blended yarns

Authors: Chuanjie Zhang, Zeqi Chen, Weida Rao, Lingling Fan, Zhigang Xia, Weilin Xu, Jie Xu

Published in: Cellulose | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Yarn supercapacitors (YSCs) are attracting considerable interest for wearable electronics and intelligent textiles due to their high flexibility and weavability. In the present study, stainless steel/cotton blended yarns were used as supports and current collectors to produce polypyrrole-coated yarn electrodes. The as-made YSC exhibited a high areal specific capacitance of 344 mF cm−2 at a current density of 0.6 mA cm−2 and good cycling stability (almost 93% capacitance retention over 1000 cycles). Moreover, the YSC could be knitted into other fabrics without damaging its original structure and electrochemical performance owing to its superior flexibility, indicating that it can meet the requirements of energy-storage devices for wearable electronics.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Alamer FA (2017) A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT:PSS. J Alloys Compd 702:266–273CrossRef Alamer FA (2017) A simple method for fabricating highly electrically conductive cotton fabric without metals or nanoparticles, using PEDOT:PSS. J Alloys Compd 702:266–273CrossRef
go back to reference Alamer FA (2018) Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black. Cellulose 25:2075–2082CrossRef Alamer FA (2018) Structural and electrical properties of conductive cotton fabrics coated with the composite polyaniline/carbon black. Cellulose 25:2075–2082CrossRef
go back to reference Ambade RB, Ambade SB, Shrestha NK, Salunkhe R, Lee W, Bagde SS, Kim JH, Yamauchi Y, Lee SH, Stadler FJ (2017) Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor application. J Mater Chem A 5:172–180CrossRef Ambade RB, Ambade SB, Shrestha NK, Salunkhe R, Lee W, Bagde SS, Kim JH, Yamauchi Y, Lee SH, Stadler FJ (2017) Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor application. J Mater Chem A 5:172–180CrossRef
go back to reference Bedeloglu A, Sunter N, Bozkurt Y (2011) Manufacturing and properties of yarns containing metal wires. Mater Manuf Process 26:1378–1382CrossRef Bedeloglu A, Sunter N, Bozkurt Y (2011) Manufacturing and properties of yarns containing metal wires. Mater Manuf Process 26:1378–1382CrossRef
go back to reference Bedeloglu A, Sunter N, Yildirim B, Bozkurt Y (2012) Bending and tensile properties of cotton/metal wire complex yarns produced for electromagnetic shielding and conductivity applications. J Text Inst 103:1304–1311CrossRef Bedeloglu A, Sunter N, Yildirim B, Bozkurt Y (2012) Bending and tensile properties of cotton/metal wire complex yarns produced for electromagnetic shielding and conductivity applications. J Text Inst 103:1304–1311CrossRef
go back to reference Blinova NV, Stejskala J, Trchová M, Prokeš J, Omastovác M (2007) Polyaniline and polypyrrole: a comparative study of the preparation. Eur Polym J 43:2331–2341CrossRef Blinova NV, Stejskala J, Trchová M, Prokeš J, Omastovác M (2007) Polyaniline and polypyrrole: a comparative study of the preparation. Eur Polym J 43:2331–2341CrossRef
go back to reference Chen X, Qiu L, Ren J, Guan G, Lin H, Zhang Z, Chen P, Wang Y, Peng H (2013) Novel electric double-layer capacitor with a coaxial fiber structure. Adv Mater 25:6436–6441CrossRef Chen X, Qiu L, Ren J, Guan G, Lin H, Zhang Z, Chen P, Wang Y, Peng H (2013) Novel electric double-layer capacitor with a coaxial fiber structure. Adv Mater 25:6436–6441CrossRef
go back to reference Chen Y, Xu B, Wen J, Gong J, Hua T, Kan C-W, Deng J (2018) Design of novel wearable, stretchable, and waterproof cable-type supercapacitors based on high-performance nickel cobalt sulfide-coated etching-annealed yarn electrodes. Small 14:1704373CrossRef Chen Y, Xu B, Wen J, Gong J, Hua T, Kan C-W, Deng J (2018) Design of novel wearable, stretchable, and waterproof cable-type supercapacitors based on high-performance nickel cobalt sulfide-coated etching-annealed yarn electrodes. Small 14:1704373CrossRef
go back to reference Dong K, Deng J, Zi Y, Wang YC, Xu C, Zou H, Ding W, Dai Y, Gu B, Sun B (2017) 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv Mater 29:1702648CrossRef Dong K, Deng J, Zi Y, Wang YC, Xu C, Zou H, Ding W, Dai Y, Gu B, Sun B (2017) 3D orthogonal woven triboelectric nanogenerator for effective biomechanical energy harvesting and as self-powered active motion sensors. Adv Mater 29:1702648CrossRef
go back to reference Fu Y, Ye S, Cai X, Yu X, Kafafy H, Zou D (2013) Integrated power fiber for energy conversion and storage system. Energy Environ Sci 6:805–812CrossRef Fu Y, Ye S, Cai X, Yu X, Kafafy H, Zou D (2013) Integrated power fiber for energy conversion and storage system. Energy Environ Sci 6:805–812CrossRef
go back to reference Gao Z, Bumgardner C, Song N, Zhang Y, Li J, Li X (2016) Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication. Nat Commun 7:11586CrossRefPubMedPubMedCentral Gao Z, Bumgardner C, Song N, Zhang Y, Li J, Li X (2016) Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication. Nat Commun 7:11586CrossRefPubMedPubMedCentral
go back to reference Gholami M, Nia PM, Alias Y (2015) Morphology and electrical properties of electrochemically synthesized pyrrole–formyl pyrrole copolymer. Appl Surf Sci 357:806–813CrossRef Gholami M, Nia PM, Alias Y (2015) Morphology and electrical properties of electrochemically synthesized pyrrole–formyl pyrrole copolymer. Appl Surf Sci 357:806–813CrossRef
go back to reference Girija TC, Sangaranarayanan MV (2006) Polyaniline-based nickel electrodes for electrochemical supercapacitors—influence of Triton X-100. J Power Sources 159:1519–1526CrossRef Girija TC, Sangaranarayanan MV (2006) Polyaniline-based nickel electrodes for electrochemical supercapacitors—influence of Triton X-100. J Power Sources 159:1519–1526CrossRef
go back to reference Huang Y, Hu H, Huang Y, Zhu M, Meng W, Liu C, Pei Z, Hao C, Wang Z, Zhi C (2015) From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. ACS Nano 9:4766–4775CrossRefPubMed Huang Y, Hu H, Huang Y, Zhu M, Meng W, Liu C, Pei Z, Hao C, Wang Z, Zhi C (2015) From industrially weavable and knittable highly conductive yarns to large wearable energy storage textiles. ACS Nano 9:4766–4775CrossRefPubMed
go back to reference Jagatheesan K, Ramasamy A, Das A, Basu A (2017) Investigation on shielding and mechanical behavior of carbon/stainless steel hybrid yarn woven fabrics and their composites. J Electron Mater 46:5073–5088CrossRef Jagatheesan K, Ramasamy A, Das A, Basu A (2017) Investigation on shielding and mechanical behavior of carbon/stainless steel hybrid yarn woven fabrics and their composites. J Electron Mater 46:5073–5088CrossRef
go back to reference Jin C, Wang H-T, Liu Y-N, Kang X-H, Liu P, Zhang J-N, Jin L-N, Bian S-W, Zhu Q (2018) High-performance yarn electrode materials enhanced by surface modifications of cotton fibers with graphene sheets and polyaniline nanowire arrays for all-solid-state supercapacitors. Eelectrochim Acta 270:205–214CrossRef Jin C, Wang H-T, Liu Y-N, Kang X-H, Liu P, Zhang J-N, Jin L-N, Bian S-W, Zhu Q (2018) High-performance yarn electrode materials enhanced by surface modifications of cotton fibers with graphene sheets and polyaniline nanowire arrays for all-solid-state supercapacitors. Eelectrochim Acta 270:205–214CrossRef
go back to reference Kou L, Huang T, Zheng B, Han Y, Zhao X, Gopalsamy K, Sun H, Gao C (2014) Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun 5:3754CrossRefPubMedPubMedCentral Kou L, Huang T, Zheng B, Han Y, Zhao X, Gopalsamy K, Sun H, Gao C (2014) Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat Commun 5:3754CrossRefPubMedPubMedCentral
go back to reference Lee JA, Shin MK, Kim SH, Cho HU, Spinks GM, Wallace GG, Lima MD, Lepro X, Kozlov ME, Baughman RH, Kim SJ (2013) Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun 4:1970CrossRefPubMed Lee JA, Shin MK, Kim SH, Cho HU, Spinks GM, Wallace GG, Lima MD, Lepro X, Kozlov ME, Baughman RH, Kim SJ (2013) Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun 4:1970CrossRefPubMed
go back to reference Li Y, Sheng K, Yuan W, Shi G (2013) A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. Chem Commun 49:291–293CrossRef Li Y, Sheng K, Yuan W, Shi G (2013) A high-performance flexible fibre-shaped electrochemical capacitor based on electrochemically reduced graphene oxide. Chem Commun 49:291–293CrossRef
go back to reference Li N, Li X, Yang C, Wang F, Li J, Wang H, Chen C, Liu S, Pan Y, Li D (2016) Fabrication of a flexible free-standing film electrode composed of polypyrrole coated cellulose nanofibers/multi-walled carbon nanotubes composite for supercapacitors. RSC Adv 6:86744–86751CrossRef Li N, Li X, Yang C, Wang F, Li J, Wang H, Chen C, Liu S, Pan Y, Li D (2016) Fabrication of a flexible free-standing film electrode composed of polypyrrole coated cellulose nanofibers/multi-walled carbon nanotubes composite for supercapacitors. RSC Adv 6:86744–86751CrossRef
go back to reference Lin JH, Jhang JC, Lin TA, Huang SY, Chen YS, Lou CW (2017) Manufacturing techniques, mechanical properties, far infrared emissivity, and electromagnetic shielding effectiveness of stainless steel/polyester/bamboo charcoal knits. Fiber Polym 18:597–604CrossRef Lin JH, Jhang JC, Lin TA, Huang SY, Chen YS, Lou CW (2017) Manufacturing techniques, mechanical properties, far infrared emissivity, and electromagnetic shielding effectiveness of stainless steel/polyester/bamboo charcoal knits. Fiber Polym 18:597–604CrossRef
go back to reference Liu L, Yu Y, Yan C, Li K, Zheng Z (2015) Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes. Nat Commun 6:7620CrossRef Liu L, Yu Y, Yan C, Li K, Zheng Z (2015) Wearable energy-dense and power-dense supercapacitor yarns enabled by scalable graphene–metallic textile composite electrodes. Nat Commun 6:7620CrossRef
go back to reference Lyu X, Su F, Miao M (2016) Two-ply yarn supercapacitor based on carbon nanotube/stainless steel core–sheath yarn electrodes and ionic liquid electrolyte. J Power Sources 307:489–495CrossRef Lyu X, Su F, Miao M (2016) Two-ply yarn supercapacitor based on carbon nanotube/stainless steel core–sheath yarn electrodes and ionic liquid electrolyte. J Power Sources 307:489–495CrossRef
go back to reference Meng Q, Wang K, Guo W, Fang J, Wei Z, She X (2014) Thread-like supercapacitors based on one-step spun nanocomposite yarns. Small 10:3187–3193CrossRef Meng Q, Wang K, Guo W, Fang J, Wei Z, She X (2014) Thread-like supercapacitors based on one-step spun nanocomposite yarns. Small 10:3187–3193CrossRef
go back to reference Meng Q, Cai K, Chen Y, Chen L (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285CrossRef Meng Q, Cai K, Chen Y, Chen L (2017) Research progress on conducting polymer based supercapacitor electrode materials. Nano Energy 36:268–285CrossRef
go back to reference Müller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111CrossRef Müller D, Rambo CR, Recouvreux DOS, Porto LM, Barra GMO (2011) Chemical in situ polymerization of polypyrrole on bacterial cellulose nanofibers. Synth Met 161:106–111CrossRef
go back to reference Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H (2016) A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater 28:3646–3652CrossRefPubMed Qu G, Cheng J, Li X, Yuan D, Chen P, Chen X, Wang B, Peng H (2016) A fiber supercapacitor with high energy density based on hollow graphene/conducting polymer fiber electrode. Adv Mater 28:3646–3652CrossRefPubMed
go back to reference Ren J, Bai W, Guan G, Zhang Y, Peng H (2013) flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv Mater 25:5965–5970CrossRefPubMed Ren J, Bai W, Guan G, Zhang Y, Peng H (2013) flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv Mater 25:5965–5970CrossRefPubMed
go back to reference Senthilkumar ST, Wang Y, Huang H (2015) Advances and prospects of fiber supercapacitors. J Mater Chem A 3:20863–20879CrossRef Senthilkumar ST, Wang Y, Huang H (2015) Advances and prospects of fiber supercapacitors. J Mater Chem A 3:20863–20879CrossRef
go back to reference Smirnov MA, Sokolova MP, Geydt P, Smirnov NN, Bobrova NV, Toikka AM, Lahderanta E (2017) Dual doped electroactive hydrogelic fibrous mat with high areal capacitance. Mater Lett 199:192–195CrossRef Smirnov MA, Sokolova MP, Geydt P, Smirnov NN, Bobrova NV, Toikka AM, Lahderanta E (2017) Dual doped electroactive hydrogelic fibrous mat with high areal capacitance. Mater Lett 199:192–195CrossRef
go back to reference Sun J, Huang Y, Fu C, Wang Z, Huang Y, Zhu M, Zhi C, Hu H (2016) High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 27:230–237CrossRef Sun J, Huang Y, Fu C, Wang Z, Huang Y, Zhu M, Zhi C, Hu H (2016) High-performance stretchable yarn supercapacitor based on PPy@CNTs@urethane elastic fiber core spun yarn. Nano Energy 27:230–237CrossRef
go back to reference VijayaSankar K, KalaiSelvan R (2016) Fabrication of flexible fiber supercapacitor using covalently grafted CoFe2O4/reduced graphene oxide/polyaniline and its electrochemical performances. Electrochim Acta 213:469–481CrossRef VijayaSankar K, KalaiSelvan R (2016) Fabrication of flexible fiber supercapacitor using covalently grafted CoFe2O4/reduced graphene oxide/polyaniline and its electrochemical performances. Electrochim Acta 213:469–481CrossRef
go back to reference Wang Y, Yang J, Wang L, Du K, Yin Q (2017) Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl Mater Interface 9:20124–20131CrossRef Wang Y, Yang J, Wang L, Du K, Yin Q (2017) Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl Mater Interface 9:20124–20131CrossRef
go back to reference Wang H-T, Jin C, Liu Y-N, Kang X-H, Bian S-W, Zhu Q (2018a) Cotton yarns modified with three-dimensional metallic Ni conductive network and pseudocapacitive Co–Ni layered double hydroxide nanosheet array as electrode materials for flexible yarn supercapacitors. Eelectrochim Acta 283:1789–1797CrossRef Wang H-T, Jin C, Liu Y-N, Kang X-H, Bian S-W, Zhu Q (2018a) Cotton yarns modified with three-dimensional metallic Ni conductive network and pseudocapacitive Co–Ni layered double hydroxide nanosheet array as electrode materials for flexible yarn supercapacitors. Eelectrochim Acta 283:1789–1797CrossRef
go back to reference Wang H-T, Liu Y-N, Kang X-H, Wang Y-F, Yang S-Y, Bian S-W, Zhu Q (2018b) Flexible hybrid yarn-shaped supercapacitors based on porous nickel cobalt sulfide nanosheet array layers on gold metalized cotton yarns. J Colloid Interface Sci 532:527–535CrossRefPubMed Wang H-T, Liu Y-N, Kang X-H, Wang Y-F, Yang S-Y, Bian S-W, Zhu Q (2018b) Flexible hybrid yarn-shaped supercapacitors based on porous nickel cobalt sulfide nanosheet array layers on gold metalized cotton yarns. J Colloid Interface Sci 532:527–535CrossRefPubMed
go back to reference Wei C, Xu Q, Chen Z, Rao W, Fan L, Yuan Y, Bai Z, Xu J (2017) An all-solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes. Carbohydr Polym 169:50–57CrossRefPubMed Wei C, Xu Q, Chen Z, Rao W, Fan L, Yuan Y, Bai Z, Xu J (2017) An all-solid-state yarn supercapacitor using cotton yarn electrodes coated with polypyrrole nanotubes. Carbohydr Polym 169:50–57CrossRefPubMed
go back to reference Xie Y, Wang D (2016) Supercapacitance performance of polypyrrole/titanium nitride/polyaniline coaxial nanotube hybrid. J Alloys Compd 665:323–332CrossRef Xie Y, Wang D (2016) Supercapacitance performance of polypyrrole/titanium nitride/polyaniline coaxial nanotube hybrid. J Alloys Compd 665:323–332CrossRef
go back to reference Xu J, Wang D, Yuan Y, Wei W, Gu S, Liu R, Wang X, Liu L, Xu W (2015a) Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template. Cellulose 22:1355–1363CrossRef Xu J, Wang D, Yuan Y, Wei W, Gu S, Liu R, Wang X, Liu L, Xu W (2015a) Polypyrrole-coated cotton fabrics for flexible supercapacitor electrodes prepared using CuO nanoparticles as template. Cellulose 22:1355–1363CrossRef
go back to reference Xu LL, Guo MX, Liu S, Bian SW (2015b) Graphene/cotton composite fabrics as flexible electrode materials for electrochemical capacitors. RSC Adv 5:25244–25249CrossRef Xu LL, Guo MX, Liu S, Bian SW (2015b) Graphene/cotton composite fabrics as flexible electrode materials for electrochemical capacitors. RSC Adv 5:25244–25249CrossRef
go back to reference Xu R, Wei J, Guo F, Cui X, Zhang T, Zhu H, Wang K, Wu D (2015c) Highly conductive, twistable and bendable polypyrrole–carbon nanotube fiber for efficient supercapacitor electrodes. RSC Adv 5:22015–22021CrossRef Xu R, Wei J, Guo F, Cui X, Zhang T, Zhu H, Wang K, Wu D (2015c) Highly conductive, twistable and bendable polypyrrole–carbon nanotube fiber for efficient supercapacitor electrodes. RSC Adv 5:22015–22021CrossRef
go back to reference Xu Q, Fan L, Yuan Y, Wei C, Bai Z, Xu J (2016) All-solid-state yarn supercapacitors based on hierarchically structured bacterial cellulose nanofiber-coated cotton yarns. Cellulose 23:3987–3997CrossRef Xu Q, Fan L, Yuan Y, Wei C, Bai Z, Xu J (2016) All-solid-state yarn supercapacitors based on hierarchically structured bacterial cellulose nanofiber-coated cotton yarns. Cellulose 23:3987–3997CrossRef
go back to reference Ye X, Zhou Q, Jia C, Tang Z, Wan Z, Wu X (2016) A knittable fibriform supercapacitor based on natural cotton thread coated with graphene and carbon nanoparticles. Electrochim Acta 206:155–164CrossRef Ye X, Zhou Q, Jia C, Tang Z, Wan Z, Wu X (2016) A knittable fibriform supercapacitor based on natural cotton thread coated with graphene and carbon nanoparticles. Electrochim Acta 206:155–164CrossRef
go back to reference Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat Nanotechnol 9:555–562CrossRef Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube–graphene fibres for capacitive energy storage. Nat Nanotechnol 9:555–562CrossRef
go back to reference Yu D, Qian Q, Wei L, Jiang W, Goh K, Wei J, Zhang J, Chen Y (2015) Emergence of fiber supercapacitors. Chem Soc Rev 44:647–662CrossRefPubMed Yu D, Qian Q, Wei L, Jiang W, Goh K, Wei J, Zhang J, Chen Y (2015) Emergence of fiber supercapacitors. Chem Soc Rev 44:647–662CrossRefPubMed
go back to reference Zhang D, Miao M, Niu H, Wei Z (2014) Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 8:4571–4579CrossRef Zhang D, Miao M, Niu H, Wei Z (2014) Core-spun carbon nanotube yarn supercapacitors for wearable electronic textiles. ACS Nano 8:4571–4579CrossRef
go back to reference Zhi J, Reiser O, Wang Y, Hu A (2017) From natural cotton thread to sewable energy dense supercapacitors. Nanoscale 9:6406–6416CrossRefPubMed Zhi J, Reiser O, Wang Y, Hu A (2017) From natural cotton thread to sewable energy dense supercapacitors. Nanoscale 9:6406–6416CrossRefPubMed
go back to reference Zhou Q, Jia C, Ye X, Tang Z, Wan Z (2016) A knittable fiber-shaped supercapacitor based on natural cotton thread for wearable electronics. J Power Sources 327:363–373 Zhou Q, Jia C, Ye X, Tang Z, Wan Z (2016) A knittable fiber-shaped supercapacitor based on natural cotton thread for wearable electronics. J Power Sources 327:363–373
Metadata
Title
A high-performance all-solid-state yarn supercapacitor based on polypyrrole-coated stainless steel/cotton blended yarns
Authors
Chuanjie Zhang
Zeqi Chen
Weida Rao
Lingling Fan
Zhigang Xia
Weilin Xu
Jie Xu
Publication date
10-11-2018
Publisher
Springer Netherlands
Published in
Cellulose / Issue 2/2019
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2126-3

Other articles of this Issue 2/2019

Cellulose 2/2019 Go to the issue