Skip to main content
Top
Published in: Cellulose 2/2019

26-11-2018 | Original Research

Fabrication of porous silk fibroin/cellulose nanofibril sponges with hierarchical structure using a lithium bromide solvent system

Authors: Yanfei Feng, Xiufang Li, Qiang Zhang, Dezhan Ye, Mingzhong Li, Renchuan You, Weilin Xu

Published in: Cellulose | Issue 2/2019

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Porous silk fibroin (SF) sponges have been widely used in biomaterials due to their excellent biocompatibility and tunable degradability. However, it remains a challenge to construct porous SF materials with 3D nanofibrous structure mimicking extracellular matrix. In this study, a novel strategy was developed to fabricate SF/cellulose sponges with micro-nano hierarchical structure through using a lithium bromide aqueous solution system. It was found that the cellulose can be partially dissolved by lithium bromide solution to form abundant cellulose nanofibrils (CNFs). Therefore, the porous SF/CNF sponge was directly prepared after dissolving SF/cellulose blend in lithium bromide solution. The structure and performance of sponges can be regulated by adjusting SF/cellulose ratio. Raising the cellulose ratio enhanced the compression strength and water swelling ratio of sponges, but restrained the 3D spatial distribution of CNFs in the pore space. As SF content increased to 50%, CNFs homogeneously dispersed and formed the porous sponges with micro-nano hierarchical structure. FTIR and XRD results showed cellulose II and silk II structure in composites, and suggested the presence of intermolecular interaction between SF and cellulose. The enzymatic degradation results showed that the degradation rate of sponges could be regulated by the SF component, which significantly promoted degradability. The results provide promising scaffold candidate with tunable nanostructure and degradability.

Graphical abstract

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
go back to reference Alexandrescu L, Syverud K, Gatti A et al (2013) Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose 20(4):1765–1775CrossRef Alexandrescu L, Syverud K, Gatti A et al (2013) Cytotoxicity tests of cellulose nanofibril-based structures. Cellulose 20(4):1765–1775CrossRef
go back to reference Bai S, Liu S, Zhang C et al (2013) Controllable transition of silk fibroin nanostructures: an insight into in vitro silk self-assembly process. Acta Biomater 9(8):7806–7813PubMedCrossRef Bai S, Liu S, Zhang C et al (2013) Controllable transition of silk fibroin nanostructures: an insight into in vitro silk self-assembly process. Acta Biomater 9(8):7806–7813PubMedCrossRef
go back to reference Barnes CP, Sell SA, Boland ED et al (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliver Rev 59(14):1413–1433CrossRef Barnes CP, Sell SA, Boland ED et al (2007) Nanofiber technology: designing the next generation of tissue engineering scaffolds. Adv Drug Deliver Rev 59(14):1413–1433CrossRef
go back to reference Bhattacharya M, Malinen MM, Lauren P et al (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164(3):291–298PubMedCrossRef Bhattacharya M, Malinen MM, Lauren P et al (2012) Nanofibrillar cellulose hydrogel promotes three-dimensional liver cell culture. J Control Release 164(3):291–298PubMedCrossRef
go back to reference Braun FN, Viney C (2003) Modelling self assembly of natural silk solutions. Int J Biol Macromol 32(3–5):59–65PubMedCrossRef Braun FN, Viney C (2003) Modelling self assembly of natural silk solutions. Int J Biol Macromol 32(3–5):59–65PubMedCrossRef
go back to reference Cai H, Sharma S, Liu W et al (2014) Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules 15(7):2540–2547PubMedCrossRef Cai H, Sharma S, Liu W et al (2014) Aerogel microspheres from natural cellulose nanofibrils and their application as cell culture scaffold. Biomacromolecules 15(7):2540–2547PubMedCrossRef
go back to reference Cao X, Ding B, Yu J et al (2012) Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr Polym 90(2):1075–1080PubMedCrossRef Cao X, Ding B, Yu J et al (2012) Cellulose nanowhiskers extracted from TEMPO-oxidized jute fibers. Carbohydr Polym 90(2):1075–1080PubMedCrossRef
go back to reference Chen J, Zhuang A, Shao H et al (2017) Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration. J Mater Chem B 5(20):3640–3650CrossRef Chen J, Zhuang A, Shao H et al (2017) Robust silk fibroin/bacterial cellulose nanoribbon composite scaffolds with radial lamellae and intercalation structure for bone regeneration. J Mater Chem B 5(20):3640–3650CrossRef
go back to reference Cheng G, Varanasi P, Arora R et al (2012) Impact of ionic liquid pretreatment conditions on cellulose crystalline structure using 1-ethyl-3-methylimidazolium acetate. J Phys Chem B 116(33):10049–10054PubMedCrossRef Cheng G, Varanasi P, Arora R et al (2012) Impact of ionic liquid pretreatment conditions on cellulose crystalline structure using 1-ethyl-3-methylimidazolium acetate. J Phys Chem B 116(33):10049–10054PubMedCrossRef
go back to reference Cho SY, Lee ME, Choi Y et al (2014) Cellulose nanofiber-reinforced silk fibroin composite film with high transparency. Fiber Polym 15(2):215–219CrossRef Cho SY, Lee ME, Choi Y et al (2014) Cellulose nanofiber-reinforced silk fibroin composite film with high transparency. Fiber Polym 15(2):215–219CrossRef
go back to reference Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6(1):13–22PubMedCrossRef Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6(1):13–22PubMedCrossRef
go back to reference Feng Y, Li X, Li M et al (2017) Facile preparation of biocompatible silk fibroin/cellulose nanocomposite films with high mechanical performance. ACS Sustain Chem Eng 5(7):6227–6236CrossRef Feng Y, Li X, Li M et al (2017) Facile preparation of biocompatible silk fibroin/cellulose nanocomposite films with high mechanical performance. ACS Sustain Chem Eng 5(7):6227–6236CrossRef
go back to reference Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10(1):44–46CrossRef Fukaya Y, Hayashi K, Wada M, Ohno H (2008) Cellulose dissolution with polar ionic liquids under mild conditions: required factors for anions. Green Chem 10(1):44–46CrossRef
go back to reference Gao K, Guo Y, Niu Q et al (2018) Cellulose nanofibers/silk fibroin nanohybrid sponges with highly ordered and multi-scale hierarchical honeycomb structure. Cellulose 25(1):429–437CrossRef Gao K, Guo Y, Niu Q et al (2018) Cellulose nanofibers/silk fibroin nanohybrid sponges with highly ordered and multi-scale hierarchical honeycomb structure. Cellulose 25(1):429–437CrossRef
go back to reference Han J, Zhou C, Wu Y et al (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14(5):1529–1540PubMedCrossRef Han J, Zhou C, Wu Y et al (2013) Self-assembling behavior of cellulose nanoparticles during freeze-drying: effect of suspension concentration, particle size, crystal structure, and surface charge. Biomacromolecules 14(5):1529–1540PubMedCrossRef
go back to reference Horan RL, Antle K, Collette AL et al (2005) In vitro degradation of silk fibroin. Biomaterials 26(17):3385–3393PubMedCrossRef Horan RL, Antle K, Collette AL et al (2005) In vitro degradation of silk fibroin. Biomaterials 26(17):3385–3393PubMedCrossRef
go back to reference Hu X, Kaplan D, Cebe P (2007) Effect of water on the thermal properties of silk fibroin. Thermochim Acta 461(1–2):137–144CrossRef Hu X, Kaplan D, Cebe P (2007) Effect of water on the thermal properties of silk fibroin. Thermochim Acta 461(1–2):137–144CrossRef
go back to reference Hu X, Kaplan D, Cebe P (2008) Dynamic protein–water relationships during β-sheet formation. Macromolecules 41(11):3939–3948CrossRef Hu X, Kaplan D, Cebe P (2008) Dynamic protein–water relationships during β-sheet formation. Macromolecules 41(11):3939–3948CrossRef
go back to reference Hu Y, Zhang Q, You R et al (2012) The relationship between secondary structure and biodegradation behavior of silk fibroin scaffolds. Adv Mater Sci Eng 2012: Article ID 185905 Hu Y, Zhang Q, You R et al (2012) The relationship between secondary structure and biodegradation behavior of silk fibroin scaffolds. Adv Mater Sci Eng 2012: Article ID 185905
go back to reference Huang R, Li W, Lv X et al (2015) Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing. Biomaterials 53:58–75PubMedCrossRef Huang R, Li W, Lv X et al (2015) Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing. Biomaterials 53:58–75PubMedCrossRef
go back to reference Jonoobi M, Harun J, Mathew AP et al (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17(2):299–307CrossRef Jonoobi M, Harun J, Mathew AP et al (2010) Preparation of cellulose nanofibers with hydrophobic surface characteristics. Cellulose 17(2):299–307CrossRef
go back to reference Kesenci K, Motta A, Fambri L et al (2001) Poly (ε-caprolactone-co-d, l-lactide)/silk fibroin composite materials: preparation and characterization. J Biomat Sci Polym Ed 12(3):337–351CrossRef Kesenci K, Motta A, Fambri L et al (2001) Poly (ε-caprolactone-co-d, l-lactide)/silk fibroin composite materials: preparation and characterization. J Biomat Sci Polym Ed 12(3):337–351CrossRef
go back to reference Kim HJ, Yang YJ, Oh HJ et al (2017) Cellulose–silk fibroin hydrogels prepared in a lithium bromide aqueous solution. Cellulose 24(11):5079–5088CrossRef Kim HJ, Yang YJ, Oh HJ et al (2017) Cellulose–silk fibroin hydrogels prepared in a lithium bromide aqueous solution. Cellulose 24(11):5079–5088CrossRef
go back to reference Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRef Klemm D, Heublein B, Fink HP et al (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed 44(22):3358–3393CrossRef
go back to reference Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRef Klemm D, Kramer F, Moritz S et al (2011) Nanocelluloses: a new family of nature-based materials. Angew Chem Int Ed 50(24):5438–5466CrossRef
go back to reference Lee JH, Bae CH, Park BD et al (2013) Preparation of cellulose nanofibril/regenerated silk fibroin composite fibers. Int J Ind Entomol 26(2):81–88 Lee JH, Bae CH, Park BD et al (2013) Preparation of cellulose nanofibril/regenerated silk fibroin composite fibers. Int J Ind Entomol 26(2):81–88
go back to reference Li M, Ogiso M, Minoura N (2003) Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials 24(2):357–365PubMedCrossRef Li M, Ogiso M, Minoura N (2003) Enzymatic degradation behavior of porous silk fibroin sheets. Biomaterials 24(2):357–365PubMedCrossRef
go back to reference Li X, Zhang J, Feng Y et al (2018) Tuning the structure and performance of silk biomaterials by combining mulberry and non-mulberry silk fibroin. Polym Degrad Stabil 147:57–63CrossRef Li X, Zhang J, Feng Y et al (2018) Tuning the structure and performance of silk biomaterials by combining mulberry and non-mulberry silk fibroin. Polym Degrad Stabil 147:57–63CrossRef
go back to reference Lu Q, Hu X, Wang X et al (2010) Water-insoluble silk films with silk I structure. Acta Biomater 6(4):1380–1387PubMedCrossRef Lu Q, Hu X, Wang X et al (2010) Water-insoluble silk films with silk I structure. Acta Biomater 6(4):1380–1387PubMedCrossRef
go back to reference Lu Q, Wang X, Lu S et al (2011) Nanofibrous architecture of silk fibroin scaffolds prepared with a mild self-assembly process. Biomaterials 32(4):1059–1067PubMedCrossRef Lu Q, Wang X, Lu S et al (2011) Nanofibrous architecture of silk fibroin scaffolds prepared with a mild self-assembly process. Biomaterials 32(4):1059–1067PubMedCrossRef
go back to reference Luo J, Chang H, Davijani AAB et al (2017) Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films. Cellulose 24(4):1745–1758CrossRef Luo J, Chang H, Davijani AAB et al (2017) Influence of high loading of cellulose nanocrystals in polyacrylonitrile composite films. Cellulose 24(4):1745–1758CrossRef
go back to reference Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliver Rev 60(2):184–198CrossRef Ma PX (2008) Biomimetic materials for tissue engineering. Adv Drug Deliver Rev 60(2):184–198CrossRef
go back to reference Malinen MM, Kanninen LK, Corlu A et al (2014) Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials 35(19):5110–5121PubMedCrossRef Malinen MM, Kanninen LK, Corlu A et al (2014) Differentiation of liver progenitor cell line to functional organotypic cultures in 3D nanofibrillar cellulose and hyaluronan-gelatin hydrogels. Biomaterials 35(19):5110–5121PubMedCrossRef
go back to reference Märtson M, Viljanto J, Hurme T et al (1999) Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials 20(21):1989–1995PubMedCrossRef Märtson M, Viljanto J, Hurme T et al (1999) Is cellulose sponge degradable or stable as implantation material? An in vivo subcutaneous study in the rat. Biomaterials 20(21):1989–1995PubMedCrossRef
go back to reference Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994PubMedCrossRef Moon RJ, Martini A, Nairn J et al (2011) Cellulose nanomaterials review: structure, properties and nanocomposites. Chem Soc Rev 40(7):3941–3994PubMedCrossRef
go back to reference Naskar D, Ghosh AK, Mandal M et al (2017) Dual growth factor loaded nonmulberry silk fibroin/carbon nanofiber composite 3D scaffolds for in vitro and in vivo bone regeneration. Biomaterials 136:67–85PubMedCrossRef Naskar D, Ghosh AK, Mandal M et al (2017) Dual growth factor loaded nonmulberry silk fibroin/carbon nanofiber composite 3D scaffolds for in vitro and in vivo bone regeneration. Biomaterials 136:67–85PubMedCrossRef
go back to reference Numata K, Cebe P, Kaplan DL (2010) Mechanism of enzymatic degradation of beta-sheet crystals. Biomaterials 31(10):2926–2933PubMedCrossRef Numata K, Cebe P, Kaplan DL (2010) Mechanism of enzymatic degradation of beta-sheet crystals. Biomaterials 31(10):2926–2933PubMedCrossRef
go back to reference Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941PubMedCrossRef Pääkkö M, Ankerfors M, Kosonen H et al (2007) Enzymatic hydrolysis combined with mechanical shearing and high-pressure homogenization for nanoscale cellulose fibrils and strong gels. Biomacromolecules 8(6):1934–1941PubMedCrossRef
go back to reference Qing Y, Sabo R, Zhu JY et al (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97(1):226–234PubMedCrossRef Qing Y, Sabo R, Zhu JY et al (2013) A comparative study of cellulose nanofibrils disintegrated via multiple processing approaches. Carbohydr Polym 97(1):226–234PubMedCrossRef
go back to reference Ragoonanan V, Aksan A (2008) Heterogeneity in desiccated solutions: implications for biostabilization. Biophys J 94(6):2212–2227PubMedCrossRef Ragoonanan V, Aksan A (2008) Heterogeneity in desiccated solutions: implications for biostabilization. Biophys J 94(6):2212–2227PubMedCrossRef
go back to reference Rnjak-Kovacina J, Wray LS, Burke KA et al (2015) Lyophilized silk sponges: a versatile biomaterial platform for soft tissue engineering. ACS Biomater Sci Eng 1(4):260–270PubMedPubMedCentralCrossRef Rnjak-Kovacina J, Wray LS, Burke KA et al (2015) Lyophilized silk sponges: a versatile biomaterial platform for soft tissue engineering. ACS Biomater Sci Eng 1(4):260–270PubMedPubMedCentralCrossRef
go back to reference Roy D, Semsarilar M, Guthrie JT et al (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064PubMedCrossRef Roy D, Semsarilar M, Guthrie JT et al (2009) Cellulose modification by polymer grafting: a review. Chem Soc Rev 38(7):2046–2064PubMedCrossRef
go back to reference Saito T, Kuramae R, Wohlert J et al (2012) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14(1):248–253PubMedCrossRef Saito T, Kuramae R, Wohlert J et al (2012) An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation. Biomacromolecules 14(1):248–253PubMedCrossRef
go back to reference Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6(8):1824–1832CrossRef Sehaqui H, Salajková M, Zhou Q, Berglund LA (2010) Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter 6(8):1824–1832CrossRef
go back to reference Sen S, Martin JD, Argyropoulos DS (2013) Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustain Chem Eng 1(8):858–870CrossRef Sen S, Martin JD, Argyropoulos DS (2013) Review of cellulose non-derivatizing solvent interactions with emphasis on activity in inorganic molten salt hydrates. ACS Sustain Chem Eng 1(8):858–870CrossRef
go back to reference Shang S, Zhu L, Fan J (2011) Physical properties of silk fibroin/cellulose blend films regenerated from the hydrophilic ionic liquid. Carbohydr Polym 86(2):462–468CrossRef Shang S, Zhu L, Fan J (2011) Physical properties of silk fibroin/cellulose blend films regenerated from the hydrophilic ionic liquid. Carbohydr Polym 86(2):462–468CrossRef
go back to reference Svagan AJ, Samir MA, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv Mater 20(7):1263–1269CrossRef Svagan AJ, Samir MA, Berglund LA (2008) Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv Mater 20(7):1263–1269CrossRef
go back to reference Torres-Rendon JG, Köpf M, Gehlen D et al (2016) Cellulose nanofibril hydrogel tubes as sacrificial templates for freestanding tubular cell constructs. Biomacromolecules 17(3):905–913PubMedCrossRef Torres-Rendon JG, Köpf M, Gehlen D et al (2016) Cellulose nanofibril hydrogel tubes as sacrificial templates for freestanding tubular cell constructs. Biomacromolecules 17(3):905–913PubMedCrossRef
go back to reference Wang Q, Chen Q, Yang Y, Shao Z (2012) Effect of various dissolution systems on the molecular weight of regenerated silk fibroin. Biomacromolecules 14(1):285–289PubMedCrossRef Wang Q, Chen Q, Yang Y, Shao Z (2012) Effect of various dissolution systems on the molecular weight of regenerated silk fibroin. Biomacromolecules 14(1):285–289PubMedCrossRef
go back to reference Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16(6):229–241CrossRef Wang X, Ding B, Li B (2013) Biomimetic electrospun nanofibrous structures for tissue engineering. Mater Today 16(6):229–241CrossRef
go back to reference Yang YJ, Shin JM, Kang TH et al (2014) Cellulose dissolution in aqueous lithium bromide solutions. Cellulose 21(3):1175–1181CrossRef Yang YJ, Shin JM, Kang TH et al (2014) Cellulose dissolution in aqueous lithium bromide solutions. Cellulose 21(3):1175–1181CrossRef
go back to reference Yao Y, Mukuze KS, Zhang Y et al (2014) Rheological behavior of cellulose/silk fibroin blend solutions with ionic liquid as solvent. Cellulose 21(1):675–684CrossRef Yao Y, Mukuze KS, Zhang Y et al (2014) Rheological behavior of cellulose/silk fibroin blend solutions with ionic liquid as solvent. Cellulose 21(1):675–684CrossRef
go back to reference Zhang Y, Nypelö T, Salas C et al (2013) Cellulose Nanofibrils: from strong materials to bioactive surfaces. J Renew Mater 1(3):195–211CrossRef Zhang Y, Nypelö T, Salas C et al (2013) Cellulose Nanofibrils: from strong materials to bioactive surfaces. J Renew Mater 1(3):195–211CrossRef
go back to reference Zhou L, Wang Q, Wen J et al (2013) Preparation and characterization of transparent silk fibroin/cellulose blend films. Polymer 54(18):5035–5042CrossRef Zhou L, Wang Q, Wen J et al (2013) Preparation and characterization of transparent silk fibroin/cellulose blend films. Polymer 54(18):5035–5042CrossRef
Metadata
Title
Fabrication of porous silk fibroin/cellulose nanofibril sponges with hierarchical structure using a lithium bromide solvent system
Authors
Yanfei Feng
Xiufang Li
Qiang Zhang
Dezhan Ye
Mingzhong Li
Renchuan You
Weilin Xu
Publication date
26-11-2018
Publisher
Springer Netherlands
Published in
Cellulose / Issue 2/2019
Print ISSN: 0969-0239
Electronic ISSN: 1572-882X
DOI
https://doi.org/10.1007/s10570-018-2149-9

Other articles of this Issue 2/2019

Cellulose 2/2019 Go to the issue