Skip to main content
Top
Published in: Cognitive Computation 4/2012

01-12-2012

Physiological LQR Design for Postural Control Coordination of Sit-to-Stand Movement

Authors: Asif Mahmood Mughal, Kamran Iqbal

Published in: Cognitive Computation | Issue 4/2012

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The neurophysiological mechanisms involved in postural stabilization are not well understood. Active and passive mechanisms at muscle and spinal levels as well as visual and vestibular processes are known to contribute toward postural stabilization and coordination of voluntary movement. The motivation for this research is to use a modeling–simulation framework to achieve two aims: (a) to ascertain viability of a physiologically motivated optimal controller design in the maintenance of posture and coordination of voluntary movement and (b) to study the relative contribution from active (feedforward) and passive (feedback) mechanisms in the execution of said movement. We employ a multi-segment sagittal model built on anatomical proportions with three degrees of freedom, including rotation at the ankle, knee, and hip joints. The behavior of the biomechanical model is controlled by an optimal linear quadratic regulator whose state and control weights are derived from physiological considerations. Representative postural and voluntary movements are simulated to illustrate the analysis–synthesis framework of biomechanical movement. Our analytical and simulation results support an active–passive model of postural stabilization and movement coordination. Besides expanding our understanding of the physiological stabilization processes in the body, the insight gained from this study promotes awareness of the existence of optimizing controllers in the central nervous system.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Peterka RJ. Postural control model interpretation of stabilogram diffusion process. Biol Cybern. 2000;82:335–43.PubMedCrossRef Peterka RJ. Postural control model interpretation of stabilogram diffusion process. Biol Cybern. 2000;82:335–43.PubMedCrossRef
2.
go back to reference Peterka RJ. Sensorimotor integration in Human Postural Control. J Neurophysiol. 2006;88:1097–118. Peterka RJ. Sensorimotor integration in Human Postural Control. J Neurophysiol. 2006;88:1097–118.
3.
go back to reference Van Soest AJ, Haenen WP, Rozendaal LA. Stability of bipedal stance: the contribution of cocontraction and spindle feedback. Biol Cybern. 2003;88:93–301.CrossRef Van Soest AJ, Haenen WP, Rozendaal LA. Stability of bipedal stance: the contribution of cocontraction and spindle feedback. Biol Cybern. 2003;88:93–301.CrossRef
4.
go back to reference Maurer C, Mergner T, Peterka RJ. Multisensory control of human upright stance. Exp Brain Res. 2006;171:231–50.PubMedCrossRef Maurer C, Mergner T, Peterka RJ. Multisensory control of human upright stance. Exp Brain Res. 2006;171:231–50.PubMedCrossRef
5.
go back to reference Nashner LM, McCollum G. The organization of human postural movements: a formal basis and experimental synthesis. Behav Brain Sci. 1985;8:135–72.CrossRef Nashner LM, McCollum G. The organization of human postural movements: a formal basis and experimental synthesis. Behav Brain Sci. 1985;8:135–72.CrossRef
6.
go back to reference Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. J. Neurophysiology. 1986;55:1369–81. Horak FB, Nashner LM. Central programming of postural movements: adaptation to altered support-surface configurations. J. Neurophysiology. 1986;55:1369–81.
7.
go back to reference Maki BE, McIlroy WE. The role of limb movements in maintaining upright stance: the change-in-support strategy. Phys Ther. 1997;77:488–507.PubMed Maki BE, McIlroy WE. The role of limb movements in maintaining upright stance: the change-in-support strategy. Phys Ther. 1997;77:488–507.PubMed
8.
go back to reference Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K. Stiffness control in quiet standing. J Neurophysiol. 1998;80:1211–21.PubMed Winter DA, Patla AE, Prince F, Ishac M, Gielo-Perczak K. Stiffness control in quiet standing. J Neurophysiol. 1998;80:1211–21.PubMed
9.
go back to reference Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nat Neurosci. 2002;5:1226–35.PubMedCrossRef Todorov E, Jordan MI. Optimal feedback control as a theory of motor coordination. Nat Neurosci. 2002;5:1226–35.PubMedCrossRef
10.
go back to reference Schaal S, Schweighofer N. Computational motor control in humans and robots. Curr Opin Neurobiol. 2005;15:675–82.PubMedCrossRef Schaal S, Schweighofer N. Computational motor control in humans and robots. Curr Opin Neurobiol. 2005;15:675–82.PubMedCrossRef
11.
12.
go back to reference Kuo AD. An optimal control model for analyzing human postural balance. IEEE Trans Biomed Eng. 1995;42:87–101.PubMedCrossRef Kuo AD. An optimal control model for analyzing human postural balance. IEEE Trans Biomed Eng. 1995;42:87–101.PubMedCrossRef
13.
go back to reference Kuo AD. An optimal state estimation model of sensory integration in human postural balance. J Neural Eng. 2005;2:235–49.CrossRef Kuo AD. An optimal state estimation model of sensory integration in human postural balance. J Neural Eng. 2005;2:235–49.CrossRef
14.
15.
go back to reference Van der Helm FCT, Rozendaal L. Musculoskeletal Systems with Intrinsic and Proprioceptive Feedback. In: Winters JM, Crago PE, editors. Biomechanics and neural control of movement and posture. New York: Springer-Verlag; 2000. p. 164–74.CrossRef Van der Helm FCT, Rozendaal L. Musculoskeletal Systems with Intrinsic and Proprioceptive Feedback. In: Winters JM, Crago PE, editors. Biomechanics and neural control of movement and posture. New York: Springer-Verlag; 2000. p. 164–74.CrossRef
16.
go back to reference Barin K. Evaluation of a generalized model of human postural dynamics and control in the sagittal plane. Biol Cybern. 1989;61:37–50.PubMedCrossRef Barin K. Evaluation of a generalized model of human postural dynamics and control in the sagittal plane. Biol Cybern. 1989;61:37–50.PubMedCrossRef
17.
go back to reference Pai YC, Iqbal K. Simulated movement termination for balance recovery: can movement strategies be sought to maintain stability even in the presence of slipping or forced sliding? J. Biomechanics. 1999;32:779–86.CrossRef Pai YC, Iqbal K. Simulated movement termination for balance recovery: can movement strategies be sought to maintain stability even in the presence of slipping or forced sliding? J. Biomechanics. 1999;32:779–86.CrossRef
18.
go back to reference Iqbal K, Pai YC. Predicted region of stability for balance recovery: motion at knee joint can improve termination of forward movement. J. Biomech. 2000;33:1619–27.PubMedCrossRef Iqbal K, Pai YC. Predicted region of stability for balance recovery: motion at knee joint can improve termination of forward movement. J. Biomech. 2000;33:1619–27.PubMedCrossRef
19.
go back to reference Kerr KM, White JA, Barr DA, Mollan RAB. Analysis of sit-to-stand movement cycle in normal subjects. Clin Biomech. 1997;12:236–45.CrossRef Kerr KM, White JA, Barr DA, Mollan RAB. Analysis of sit-to-stand movement cycle in normal subjects. Clin Biomech. 1997;12:236–45.CrossRef
20.
go back to reference Resiman DS, Scholz JP, Schöner G. Coordination underlying the control of whole body momentum during sit-to-stand. Gait Posture. 2002;15:45–55.CrossRef Resiman DS, Scholz JP, Schöner G. Coordination underlying the control of whole body momentum during sit-to-stand. Gait Posture. 2002;15:45–55.CrossRef
21.
go back to reference Scholz JP, Resiman DS, Schöner G. Effects of varying task constraints on solutions to joint coordination in a sit-to-stand task. Exp Brain Res. 2001;141:485–500.PubMedCrossRef Scholz JP, Resiman DS, Schöner G. Effects of varying task constraints on solutions to joint coordination in a sit-to-stand task. Exp Brain Res. 2001;141:485–500.PubMedCrossRef
22.
go back to reference Mughal AM, Iqbal K. “A fuzzy biomechanical model with H2 optimal control of sit-to-stand movement”, Proceedings of the 2006 American control conference, Minneapolis, MN; 2006. pp. 3427–3432. Mughal AM, Iqbal K. “A fuzzy biomechanical model with H2 optimal control of sit-to-stand movement”, Proceedings of the 2006 American control conference, Minneapolis, MN; 2006. pp. 3427–3432.
23.
go back to reference Mughal AM, Iqbal K. “A comparison of fuzzy model based optimal control systems for biomechanical sit-to-stand movement”, Proceedings of the IEEE international conference on engineering of intelligent systems, Islamabad, Pakistan; 2006. Mughal AM, Iqbal K. “A comparison of fuzzy model based optimal control systems for biomechanical sit-to-stand movement”, Proceedings of the IEEE international conference on engineering of intelligent systems, Islamabad, Pakistan; 2006.
24.
go back to reference Jo S, Massaquoi SG. A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance. Biol Cybern. 2004;91:188–202.PubMedCrossRef Jo S, Massaquoi SG. A model of cerebellum stabilized and scheduled hybrid long-loop control of upright balance. Biol Cybern. 2004;91:188–202.PubMedCrossRef
25.
go back to reference Jo S, Massaquoi SG. A model of cerebrocerebello-spinomuscular interaction in the sagittal control of human walking. Biol Cybern. 2007;95(3):279–307.CrossRef Jo S, Massaquoi SG. A model of cerebrocerebello-spinomuscular interaction in the sagittal control of human walking. Biol Cybern. 2007;95(3):279–307.CrossRef
26.
go back to reference Mughal AM, Iqbal K. “Active control vs. passive stiffness in posture and movement coordination”, IEEE International conference on systems, man and cybernetics, Montreal, 2007. pp. 3372–3376. Mughal AM, Iqbal K. “Active control vs. passive stiffness in posture and movement coordination”, IEEE International conference on systems, man and cybernetics, Montreal, 2007. pp. 3372–3376.
27.
go back to reference Winter DA. Biomechanics and motor control of human movement. New York: Wiley; 1990. Winter DA. Biomechanics and motor control of human movement. New York: Wiley; 1990.
28.
go back to reference Brooks V. The neural basis of motor control, Chapter 4. Oxford: Oxford University Press; 1986. Brooks V. The neural basis of motor control, Chapter 4. Oxford: Oxford University Press; 1986.
29.
go back to reference Keshner E, Allum J. “Muscle activation patterns coordinating postural stability from head to foot” In Multiple muscle systems: biomechanics and movement organization, New York: Springer-Verlag; 1990. pp. 481–497. Keshner E, Allum J. “Muscle activation patterns coordinating postural stability from head to foot” In Multiple muscle systems: biomechanics and movement organization, New York: Springer-Verlag; 1990. pp. 481–497.
30.
go back to reference Mughal AM, Iqbal K. “Synthesis of angular profiles for bipedal sit-to-stand movement”, 40th southeastern symposium on system theory, New Orleans, LA, 2008. Mughal AM, Iqbal K. “Synthesis of angular profiles for bipedal sit-to-stand movement”, 40th southeastern symposium on system theory, New Orleans, LA, 2008.
31.
go back to reference Mihelj M, Munih M, Ponikvar M. Human energy: optimal control of disturbance rejection during constrained standing. J Med Eng Technol. 2003;27:223–32.PubMedCrossRef Mihelj M, Munih M, Ponikvar M. Human energy: optimal control of disturbance rejection during constrained standing. J Med Eng Technol. 2003;27:223–32.PubMedCrossRef
32.
go back to reference Feldman AG. Functional tuning of the nervous system with control of movement or maintenance of a steady posture. ii. controllable parameters of the muscle. Biophysics. 1996;11:565–78. Feldman AG. Functional tuning of the nervous system with control of movement or maintenance of a steady posture. ii. controllable parameters of the muscle. Biophysics. 1996;11:565–78.
33.
go back to reference Shadmehr R. The equilibrium point hypothesis for control of movement. Baltimore, MD: Department of Biomedical Engineering, Johns Hopkins University; 1998. Shadmehr R. The equilibrium point hypothesis for control of movement. Baltimore, MD: Department of Biomedical Engineering, Johns Hopkins University; 1998.
34.
go back to reference Gottlieb GL. Rejecting the equilibrium-point hypothesis. Mot Control. 1998;2:10–2. Gottlieb GL. Rejecting the equilibrium-point hypothesis. Mot Control. 1998;2:10–2.
35.
go back to reference Gomi H, Kawato M. Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement. Science. 1996;272:117–20.PubMedCrossRef Gomi H, Kawato M. Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement. Science. 1996;272:117–20.PubMedCrossRef
36.
go back to reference Cecilia L, Roland J. Bio-inspired sensory-motor coordination. Auton Robots. 2008;25:1–2.CrossRef Cecilia L, Roland J. Bio-inspired sensory-motor coordination. Auton Robots. 2008;25:1–2.CrossRef
37.
go back to reference Cecilia L, Gioel A, Eugenio G, Giancarlo T, Roland J, Hitoshi K, Zbigniew W, Maria C, Paolo D. A bio-inspired predictive sensory-motor coordination scheme for robot reaching and preshaping. Auton Robots. 2008;25:85–101.CrossRef Cecilia L, Gioel A, Eugenio G, Giancarlo T, Roland J, Hitoshi K, Zbigniew W, Maria C, Paolo D. A bio-inspired predictive sensory-motor coordination scheme for robot reaching and preshaping. Auton Robots. 2008;25:85–101.CrossRef
Metadata
Title
Physiological LQR Design for Postural Control Coordination of Sit-to-Stand Movement
Authors
Asif Mahmood Mughal
Kamran Iqbal
Publication date
01-12-2012
Publisher
Springer-Verlag
Published in
Cognitive Computation / Issue 4/2012
Print ISSN: 1866-9956
Electronic ISSN: 1866-9964
DOI
https://doi.org/10.1007/s12559-012-9160-5

Other articles of this Issue 4/2012

Cognitive Computation 4/2012 Go to the issue

Premium Partner