Skip to main content
Top
Published in: Fire Technology 2/2016

01-03-2016

Polyamide 6 and Polyurethane Used as Liner for Hydrogen Composite Cylinder: An Estimation of Fire Behaviours

Authors: D. Quang Dao, J. Luche, T. Rogaume, F. Richard, L. Bustamante-Valencia, S. Ruban

Published in: Fire Technology | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The most advanced gas storage cylinders are composed of a high molecular weight polymeric liner and fibre reinforced composite. The goal of this paper is to study in ISO 5660 cone calorimeter the thermal behaviours of carbon fibre/epoxy composite covered by a liner made of polyamide 6 (PA6) or polyurethane (PU). Time-to-ignition, amount and rate of mass loss, heat release rate, total heat release rate and effective heat of combustion were measured and calculated at three irradiance levels (20, 40 and 60 kW m−2). The main exhaust gaseous species evolution as well as oxygen consumption were also quantified during the thermal decomposition process. The transient temperatures were measured at middle-thickness of composite layer and at composite/liner interface by using K-type thermocouples. Indeed, these technical data play a significant role to choose the adequate liner to be used for full-composite cylinder application. Results show that the liner type has no effect on flaming ignition of exposed composite as well as the temperature profiles within materials. Comparing to PA6, the PU liner presents a faster melting and decomposition rate (i.e. with a lower thermal resistance), a lower heat release rate levels and low major gas (i.e. CO, CO2 and NO) emission yields (i.e. a lower gaseous product toxicity). Based on the comparison of the fire-to-reaction properties, the PU thermoplastics are recommended to be used as liner to cover gas storage composite cylinder.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
2.
3.
go back to reference Zhou L (2005) Progress and problems in hydrogen storage methods. Renew Sustain Energy Rev 9:395–408CrossRef Zhou L (2005) Progress and problems in hydrogen storage methods. Renew Sustain Energy Rev 9:395–408CrossRef
4.
go back to reference Chen P, Zhou N (2008) Recent progress in hydrogen storage. Mater Today 11(12):36–43CrossRef Chen P, Zhou N (2008) Recent progress in hydrogen storage. Mater Today 11(12):36–43CrossRef
5.
go back to reference Barthélémy H (2006) Ignition of a composite cylinder with plastic liner. J ASTM Int 3(5):172–175 Barthélémy H (2006) Ignition of a composite cylinder with plastic liner. J ASTM Int 3(5):172–175
6.
go back to reference Hu J, Chen J, Sundararaman S et al (2008) Analysis of composite hydrogen storage cylinders subjected to localized flame impingements. Int J Hydrog Energy 33:2738–2746CrossRef Hu J, Chen J, Sundararaman S et al (2008) Analysis of composite hydrogen storage cylinders subjected to localized flame impingements. Int J Hydrog Energy 33:2738–2746CrossRef
7.
go back to reference Zheng J, Liu X, Xu P et al (2012) Development of high pressure gaseous hydrogen storage technologies. Int J Hydrog Energy 37:1048–1057CrossRef Zheng J, Liu X, Xu P et al (2012) Development of high pressure gaseous hydrogen storage technologies. Int J Hydrog Energy 37:1048–1057CrossRef
8.
go back to reference Régnier N, Fontaine S (2001) Determination of the thermal degradation kinetic parameters of carbon fibre reinforced epoxy using TG. J Therm Anal Calorim 64:789–799CrossRef Régnier N, Fontaine S (2001) Determination of the thermal degradation kinetic parameters of carbon fibre reinforced epoxy using TG. J Therm Anal Calorim 64:789–799CrossRef
9.
go back to reference Jiang J, Pickering SJ, Walker GS et al (2007) Soft ionization analysis of evolved gas for oxidative decomposition of an epoxy resin/carbon fibre composite. Thermochim Acta 454:109–115CrossRef Jiang J, Pickering SJ, Walker GS et al (2007) Soft ionization analysis of evolved gas for oxidative decomposition of an epoxy resin/carbon fibre composite. Thermochim Acta 454:109–115CrossRef
10.
go back to reference Noël D, Hechler JJ, Cole KC et al (1998) Quantitative thermal characterization of carbon-epoxy composites using differential scanning calorimetry and thermogravimetric analysis. Thermochim Acta 125:191–208CrossRef Noël D, Hechler JJ, Cole KC et al (1998) Quantitative thermal characterization of carbon-epoxy composites using differential scanning calorimetry and thermogravimetric analysis. Thermochim Acta 125:191–208CrossRef
11.
go back to reference Branca C, Di Blasi C, Galgano A et al (2011) Thermal and kinetic characterization of a toughened epoxy resin reinforced with carbon fibers. Thermochim Acta 517: 53–62CrossRef Branca C, Di Blasi C, Galgano A et al (2011) Thermal and kinetic characterization of a toughened epoxy resin reinforced with carbon fibers. Thermochim Acta 517: 53–62CrossRef
12.
go back to reference Biswas B, Kandola BK, Horrocks AR et al (2007) A quantitative study of carbon monoxide and carbon dioxide evolution during thermal degradation of flame retarded epoxy resins. Polym Degrad Stab 92:765–776CrossRef Biswas B, Kandola BK, Horrocks AR et al (2007) A quantitative study of carbon monoxide and carbon dioxide evolution during thermal degradation of flame retarded epoxy resins. Polym Degrad Stab 92:765–776CrossRef
13.
go back to reference Hshieh FY, Beeson HD (1997) Flammability testing of flame-retarded epoxy composites and phenolic composites. Fire Mater 21:41–49CrossRef Hshieh FY, Beeson HD (1997) Flammability testing of flame-retarded epoxy composites and phenolic composites. Fire Mater 21:41–49CrossRef
14.
go back to reference Sorathia U, Lyon R, Gann RG et al (1997) Materials and fire threat. Fire Technol 33:260–275CrossRef Sorathia U, Lyon R, Gann RG et al (1997) Materials and fire threat. Fire Technol 33:260–275CrossRef
15.
go back to reference Sorathia U, Long G, Gracik T et al (2001) Screening tests for fire safety of composites for marine applications. Fire Mater 25:215–222CrossRef Sorathia U, Long G, Gracik T et al (2001) Screening tests for fire safety of composites for marine applications. Fire Mater 25:215–222CrossRef
16.
go back to reference Mouritz AP, Mathys Z, Gibson AG (2006) Heat release of polymer composites in fire. Compos A 37:1040–1054CrossRef Mouritz AP, Mathys Z, Gibson AG (2006) Heat release of polymer composites in fire. Compos A 37:1040–1054CrossRef
17.
go back to reference Briggs PJ, Hunter JG (2004) Macro-scale multi-component materials in fire, MMS16 PYROMMS Project: UK Department of Trade and Industry report CHJB/005/00055C, June 2004 Briggs PJ, Hunter JG (2004) Macro-scale multi-component materials in fire, MMS16 PYROMMS Project: UK Department of Trade and Industry report CHJB/005/00055C, June 2004
18.
go back to reference Sorathia U, Dapp T, Kerr J (1991) Flammability characteristics of composites for shipboard and submarine internal application. In: Proceedings of the 36th international SAMPE symposium, San Diego, US Sorathia U, Dapp T, Kerr J (1991) Flammability characteristics of composites for shipboard and submarine internal application. In: Proceedings of the 36th international SAMPE symposium, San Diego, US
19.
go back to reference Quang Dao D, Luche J, Richard F et al (2013) Determination of characteristic parameters for the thermal decomposition of epoxy resin/carbon fibre composites in cone calorimeters. Int J Hydrog Energy 38:8167–8178 Quang Dao D, Luche J, Richard F et al (2013) Determination of characteristic parameters for the thermal decomposition of epoxy resin/carbon fibre composites in cone calorimeters. Int J Hydrog Energy 38:8167–8178
20.
go back to reference Sorathia U (1993) Flammability and fire safety of composite materials. In: Proceedings of the 1st international workshop on composite materials for offshore operations, Houston, Texas, US Sorathia U (1993) Flammability and fire safety of composite materials. In: Proceedings of the 1st international workshop on composite materials for offshore operations, Houston, Texas, US
21.
go back to reference Tewarson A, Macaione DP (1993) Polymers and composites—an examination of fire spread and generation of heat and fire products. J Fire Sci 11:421–441CrossRef Tewarson A, Macaione DP (1993) Polymers and composites—an examination of fire spread and generation of heat and fire products. J Fire Sci 11:421–441CrossRef
22.
go back to reference Gibson AG, Hume J (1995) Fire performance of composite panels for large marine structures. Plast Rubbers Compos Process Appl 23:175–183 Gibson AG, Hume J (1995) Fire performance of composite panels for large marine structures. Plast Rubbers Compos Process Appl 23:175–183
23.
go back to reference Sastri SB, Armistead JP, Keller TM et al (1997) Flammability characteristics of phthalonitrile composites. In: Proceedings of the 42th international SAMPE symposium, California, US, pp 1032–1038 Sastri SB, Armistead JP, Keller TM et al (1997) Flammability characteristics of phthalonitrile composites. In: Proceedings of the 42th international SAMPE symposium, California, US, pp 1032–1038
24.
go back to reference Allison DM, Marchand AJ, Morchat RM (1991) Fire performance of composite materials in ships and offshore structures. Mar Struct 4:129–140CrossRef Allison DM, Marchand AJ, Morchat RM (1991) Fire performance of composite materials in ships and offshore structures. Mar Struct 4:129–140CrossRef
25.
go back to reference Mouritz AP, Feih S, Mathys Z et al (2011) Mechanical property degradation of naval composite materials. Fire Technol 47:913–939CrossRef Mouritz AP, Feih S, Mathys Z et al (2011) Mechanical property degradation of naval composite materials. Fire Technol 47:913–939CrossRef
26.
go back to reference Liu L, Homes JW, Kardomateas GA et al (2011) Compressive response of composites under combined fire and compression loading. Fire Technol 47:985–1016CrossRef Liu L, Homes JW, Kardomateas GA et al (2011) Compressive response of composites under combined fire and compression loading. Fire Technol 47:985–1016CrossRef
27.
go back to reference Chowdhury EU, Eedson R, Bisby LA et al (2011) Mechanical characterization of fiber reinforced polymers materials at high temperature. Fire Technol 47:1063–1080CrossRef Chowdhury EU, Eedson R, Bisby LA et al (2011) Mechanical characterization of fiber reinforced polymers materials at high temperature. Fire Technol 47:1063–1080CrossRef
28.
go back to reference Hilado CJ (1973) An overview of the fire behavior of polymers. Fire Technol 9:198–208CrossRef Hilado CJ (1973) An overview of the fire behavior of polymers. Fire Technol 9:198–208CrossRef
29.
go back to reference Lattimer BY, Ouellette J, Trelles J (2011) Thermal response of composite materials to elevated temperatures. Fire Technol 47:823–850CrossRef Lattimer BY, Ouellette J, Trelles J (2011) Thermal response of composite materials to elevated temperatures. Fire Technol 47:823–850CrossRef
30.
go back to reference Berthier JC (2009) Polyuréthane PUR. Techniques de l’ingénieur. AM 3 4 25v2-2 Berthier JC (2009) Polyuréthane PUR. Techniques de l’ingénieur. AM 3 4 25v2-2
31.
go back to reference Guérin B (1994) Polyamides PA. Techniques de l’ingénieur. A 3:360–361 Guérin B (1994) Polyamides PA. Techniques de l’ingénieur. A 3:360–361
32.
go back to reference Guidebook for the effective use of hydrogen. March 2008. Hydrogen infrastructure project team in Japan Guidebook for the effective use of hydrogen. March 2008. Hydrogen infrastructure project team in Japan
33.
go back to reference Duquesne S, Le Bras M, Bourbigot S et al (2000) Analysis of fire gases released from polyurethane and fire-retarded polyurethane coatings. J Fire Sci 18:456–482CrossRef Duquesne S, Le Bras M, Bourbigot S et al (2000) Analysis of fire gases released from polyurethane and fire-retarded polyurethane coatings. J Fire Sci 18:456–482CrossRef
34.
go back to reference Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethane. Prog Polym Sci 34:1068–1133CrossRef Chattopadhyay DK, Webster DC (2009) Thermal stability and flame retardancy of polyurethane. Prog Polym Sci 34:1068–1133CrossRef
35.
go back to reference Bustamante Valencia L, Rogaume T, Guillaume E et al (2009) Analysis of principal gas products during combustion of polyether polyurethane foam at different irradiance levels. Fire Saf J 44:933–940 Bustamante Valencia L, Rogaume T, Guillaume E et al (2009) Analysis of principal gas products during combustion of polyether polyurethane foam at different irradiance levels. Fire Saf J 44:933–940
36.
go back to reference Nielsen M, Jurasek P, Hayashi J et al (1995) Formation of toxic gases during pyrolysis of polyacrylonitrile and nylons. J Anal Appl Pyrolysis 35:43–51CrossRef Nielsen M, Jurasek P, Hayashi J et al (1995) Formation of toxic gases during pyrolysis of polyacrylonitrile and nylons. J Anal Appl Pyrolysis 35:43–51CrossRef
37.
go back to reference Bockhorn H, Hornung A, Hornung U et al (1999) Kinetic study on the non-catalysed and catalysed degradation of polyamide 6 with isothermal and dynamic methods. Thermochim Acta 337:97–110CrossRef Bockhorn H, Hornung A, Hornung U et al (1999) Kinetic study on the non-catalysed and catalysed degradation of polyamide 6 with isothermal and dynamic methods. Thermochim Acta 337:97–110CrossRef
38.
go back to reference Leichtnam JN, Schwartz D, Gadiou R (2000) The behavior of fuel nitrogen during fast pyrolysis of polyamide at high temperature. J Anal Appl Pyrolysis 55:255–268CrossRef Leichtnam JN, Schwartz D, Gadiou R (2000) The behavior of fuel nitrogen during fast pyrolysis of polyamide at high temperature. J Anal Appl Pyrolysis 55:255–268CrossRef
39.
go back to reference Herrera M, Matuschek G, Kettrup A (2001) Main products and kinetics of the thermal degradation of polyamides. Chemosphere 42:601–607CrossRef Herrera M, Matuschek G, Kettrup A (2001) Main products and kinetics of the thermal degradation of polyamides. Chemosphere 42:601–607CrossRef
40.
go back to reference Carvel R, Steinhaus T, Rein G et al (2011) Determination of the flammability properties of polymeric materials: a novel method. Polym Degrad Stab 96: 314–319CrossRef Carvel R, Steinhaus T, Rein G et al (2011) Determination of the flammability properties of polymeric materials: a novel method. Polym Degrad Stab 96: 314–319CrossRef
41.
go back to reference Philip DiNenno J (Editor-in-Chief) (2002) SFPE handbook of fire protection engineering, 3nd edn. National Fire Protection Association, Quincy Philip DiNenno J (Editor-in-Chief) (2002) SFPE handbook of fire protection engineering, 3nd edn. National Fire Protection Association, Quincy
42.
go back to reference Babrauskas V (2003) Ignition handbook. Fire Science Publishers/Fire Protection Engineers, Issaquah Babrauskas V (2003) Ignition handbook. Fire Science Publishers/Fire Protection Engineers, Issaquah
43.
go back to reference Degiovanni A (1994) Conductivité et diffusivité thermique des solides. Technique de l’ingénieur, traite Mesures et Contrôle, R 2850–2851 Degiovanni A (1994) Conductivité et diffusivité thermique des solides. Technique de l’ingénieur, traite Mesures et Contrôle, R 2850–2851
44.
go back to reference ISO 5660-1: 2002 (E) (2002) Reaction-to-fire tests—heat release, smoke production and mass loss rate—Part 1: heat release rate (cone calorimeter method). ISO, Geneva ISO 5660-1: 2002 (E) (2002) Reaction-to-fire tests—heat release, smoke production and mass loss rate—Part 1: heat release rate (cone calorimeter method). ISO, Geneva
45.
go back to reference Luche J, Rogaume T, Richard F et al (2011) Characterisation of thermal properties and analysis of combustion behavior of PMMA in cone calorimeter. Fire Saf J 46:451–461CrossRef Luche J, Rogaume T, Richard F et al (2011) Characterisation of thermal properties and analysis of combustion behavior of PMMA in cone calorimeter. Fire Saf J 46:451–461CrossRef
46.
go back to reference Mouritz AP, Gibson AB (2006) Fire properties of polymer composite materials. Springer, Dordrecht Mouritz AP, Gibson AB (2006) Fire properties of polymer composite materials. Springer, Dordrecht
47.
go back to reference Scudamore MJ (1999) Fire performance studies on glass-reinforced plastic laminat0es. Fire Mater 118:313–325CrossRef Scudamore MJ (1999) Fire performance studies on glass-reinforced plastic laminat0es. Fire Mater 118:313–325CrossRef
48.
go back to reference Hume J (1992) Assessing the fire performance characteristics of GPR composites. In: International conference on materials and design against fire, London, 1992, pp 11–15 Hume J (1992) Assessing the fire performance characteristics of GPR composites. In: International conference on materials and design against fire, London, 1992, pp 11–15
49.
go back to reference Babrauskas V, Peacock RD (1992) Heat release rate: the single most important variable in fire hazard. Fire Saf J 18:255–272CrossRef Babrauskas V, Peacock RD (1992) Heat release rate: the single most important variable in fire hazard. Fire Saf J 18:255–272CrossRef
50.
go back to reference Babrauskas V (1997) Why was the fire so big? HHR: the role of heat release rate in described fires. Fire Arson Investig 47:54–57 Babrauskas V (1997) Why was the fire so big? HHR: the role of heat release rate in described fires. Fire Arson Investig 47:54–57
51.
go back to reference Quang Dao D, Rogaume T, Luche J et al (2014) Fire protective performance of intumescent paint and ablative elastomer used for high pressure hydrogen composite cylinder. In: Fire safety science—Proceedings of the 11th international symposium, Christchurch, New Zealand. http://www.iafss.org/publications/fss/11/149 Quang Dao D, Rogaume T, Luche J et al (2014) Fire protective performance of intumescent paint and ablative elastomer used for high pressure hydrogen composite cylinder. In: Fire safety science—Proceedings of the 11th international symposium, Christchurch, New Zealand. http://​www.​iafss.​org/​publications/​fss/​11/​149
52.
go back to reference Ruban S, Heudier L, Jamois D et al (2012) Fire risk on high pressure full composite cylinders for automotive application. Int J Hydrog Energy 37:17630–17638CrossRef Ruban S, Heudier L, Jamois D et al (2012) Fire risk on high pressure full composite cylinders for automotive application. Int J Hydrog Energy 37:17630–17638CrossRef
53.
go back to reference Hirschler MM (1987) Fire hazard and toxic potency of the smoke from burning materials. J Fire Sci 5:289–375CrossRef Hirschler MM (1987) Fire hazard and toxic potency of the smoke from burning materials. J Fire Sci 5:289–375CrossRef
Metadata
Title
Polyamide 6 and Polyurethane Used as Liner for Hydrogen Composite Cylinder: An Estimation of Fire Behaviours
Authors
D. Quang Dao
J. Luche
T. Rogaume
F. Richard
L. Bustamante-Valencia
S. Ruban
Publication date
01-03-2016
Publisher
Springer US
Published in
Fire Technology / Issue 2/2016
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-014-0423-4

Other articles of this Issue 2/2016

Fire Technology 2/2016 Go to the issue