Skip to main content
Top
Published in: Fire Technology 2/2016

01-03-2016 | Short Communication

The Efficiency of Heptafluoropropane Fire Extinguishing Agent on Suppressing the Lithium Titanate Battery Fire

Authors: Qingsong Wang, Guangzheng Shao, Qiangling Duan, Man Chen, Yongqi Li, Ke Wu, Bangjin Liu, Peng Peng, Jinhua Sun

Published in: Fire Technology | Issue 2/2016

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

To investigate the efficiency of heptafluoropropane fire extinguishing agent on suppressing the lithium titanate battery fire, an experimental system was designed and built to perform the extinguishing test. The lithium titanate battery (50 Ah, 2.3 V) with diameter of 66 mm and length of 260 mm was used. A 5 kW electric heater was set under the battery to trigger the thermal runaway of the battery. When the battery fire occurs, the heptafluoropropane was immediately discharged by opening the agent storage tank till to the fire was extinguished. The battery temperatures, ignition time, release time of the agent, time to extinguish the fire, battery mass loss, amount of used agent and mean discharge rate of agent were obtained and analysed. The results illustrate that the single cell or small-scale battery pack fire can be extinguished by heptafluoropropane in the tests. Therefore, heptafluoropropane is a fire extinguishing agent candidate to put down the lithium titanate battery fire. However, due to the violent reactions still ongoing inner the cell and flammable gases ejecting continuously from the cell, the battery may be reignited after it is put down. So it was suggested that the heptafluoropropane agent should be applied as early as possible and with longer spray time than the usual case to avoid the reignition.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Ren F, Cox T, Wang H (2014) Thermal runaway risk evaluation of Li-ion cells using a pinch–torsion test. J Power Sources 249:156–162CrossRef Ren F, Cox T, Wang H (2014) Thermal runaway risk evaluation of Li-ion cells using a pinch–torsion test. J Power Sources 249:156–162CrossRef
2.
go back to reference Omar N, Monem MA, Firouz Y et al. (2014) Lithium iron phosphate based battery—assessment of the aging parameters and development of cycle life model. Appl Energy 113:1575–1585CrossRef Omar N, Monem MA, Firouz Y et al. (2014) Lithium iron phosphate based battery—assessment of the aging parameters and development of cycle life model. Appl Energy 113:1575–1585CrossRef
3.
go back to reference Lamb J, Orendorff CJ (2014) Evaluation of mechanical abuse techniques in lithium ion batteries. J Power Sources 247:189–196CrossRef Lamb J, Orendorff CJ (2014) Evaluation of mechanical abuse techniques in lithium ion batteries. J Power Sources 247:189–196CrossRef
4.
go back to reference Waag W, Käbitz S, Sauer DU (2013) Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl Energy 102:885–897CrossRef Waag W, Käbitz S, Sauer DU (2013) Experimental investigation of the lithium-ion battery impedance characteristic at various conditions and aging states and its influence on the application. Appl Energy 102:885–897CrossRef
5.
go back to reference Darcovich K, Henquin E, Kenney B et al. (2013) Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration. Appl Energy 111:853–861CrossRef Darcovich K, Henquin E, Kenney B et al. (2013) Higher-capacity lithium ion battery chemistries for improved residential energy storage with micro-cogeneration. Appl Energy 111:853–861CrossRef
6.
go back to reference Jhu C-Y, Wang Y-W, Wen C-Y, Shu C-M (2012) Thermal runaway potential of LiCoO2 and Li (Ni1/3Co1/3Mn1/3) O2 batteries determined with adiabatic calorimetry methodology. Appl Energy 100:127–131CrossRef Jhu C-Y, Wang Y-W, Wen C-Y, Shu C-M (2012) Thermal runaway potential of LiCoO2 and Li (Ni1/3Co1/3Mn1/3) O2 batteries determined with adiabatic calorimetry methodology. Appl Energy 100:127–131CrossRef
7.
go back to reference Jhu C-Y, Wang Y-W, Shu C-M et al. (2011) Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. J Hazard Mater 192:99–107 Jhu C-Y, Wang Y-W, Shu C-M et al. (2011) Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. J Hazard Mater 192:99–107
8.
go back to reference Bandhauer TM, Garimella S, Fuller TF (2011) A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc 158:R1–R25CrossRef Bandhauer TM, Garimella S, Fuller TF (2011) A critical review of thermal issues in lithium-ion batteries. J Electrochem Soc 158:R1–R25CrossRef
9.
go back to reference Goodenough JB, Kim Y (2009) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef Goodenough JB, Kim Y (2009) Challenges for rechargeable Li batteries. Chem Mater 22:587–603CrossRef
10.
go back to reference Saito Y (2005) Thermal behaviors of lithium-ion batteries during high-rate pulse cycling. J Power Sources 146:770–774CrossRef Saito Y (2005) Thermal behaviors of lithium-ion batteries during high-rate pulse cycling. J Power Sources 146:770–774CrossRef
11.
go back to reference Holzapfel M, Alloin F, Yazami R (2004) Calorimetric investigation of the reactivity of the passivation film on lithiated graphite at elevated temperatures. Electrochim Acta 49:581–589CrossRef Holzapfel M, Alloin F, Yazami R (2004) Calorimetric investigation of the reactivity of the passivation film on lithiated graphite at elevated temperatures. Electrochim Acta 49:581–589CrossRef
12.
go back to reference Gnanaraj J, Zinigrad E, Asraf L et al. A detailed investigation of the thermal reactions of LiPF6 solution in organic carbonates using ARC and DSC. J Electrochem Soc 150:A1533–A1537CrossRef Gnanaraj J, Zinigrad E, Asraf L et al. A detailed investigation of the thermal reactions of LiPF6 solution in organic carbonates using ARC and DSC. J Electrochem Soc 150:A1533–A1537CrossRef
13.
go back to reference Yamaki J-I, Takatsuji H, Kawamura T, Egashira M (2002) Thermal stability of graphite anode with electrolyte in lithium-ion cells. Solid State Ion 148:241–245CrossRef Yamaki J-I, Takatsuji H, Kawamura T, Egashira M (2002) Thermal stability of graphite anode with electrolyte in lithium-ion cells. Solid State Ion 148:241–245CrossRef
14.
go back to reference MacNeil D, Dahn J. The reaction of charged cathodes with nonaqueous solvents and electrolytes: I. Li0.5CoO2. J Electrochem Soc 148:A1205–A1210CrossRef MacNeil D, Dahn J. The reaction of charged cathodes with nonaqueous solvents and electrolytes: I. Li0.5CoO2. J Electrochem Soc 148:A1205–A1210CrossRef
15.
go back to reference Dagan S (2000) Comparison of gas chromatography—pulsed flame photometric detection—mass spectrometry, automated mass spectral deconvolution and identification system and gas chromatography—tandem mass spectrometry as tools for trace level detection and identification. J Chromatogr A 868:229–247CrossRef Dagan S (2000) Comparison of gas chromatography—pulsed flame photometric detection—mass spectrometry, automated mass spectral deconvolution and identification system and gas chromatography—tandem mass spectrometry as tools for trace level detection and identification. J Chromatogr A 868:229–247CrossRef
16.
go back to reference Andersson A, Edström K, Rao N, Wendsjö Å (1999) Temperature dependence of the passivation layer on graphite. J Power Sources 81:286–290CrossRef Andersson A, Edström K, Rao N, Wendsjö Å (1999) Temperature dependence of the passivation layer on graphite. J Power Sources 81:286–290CrossRef
17.
go back to reference Wang Q, Sun J, Yao X, Chen C (2006) Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries. J Electrochem Soc 153:A329–A333CrossRef Wang Q, Sun J, Yao X, Chen C (2006) Thermal behavior of lithiated graphite with electrolyte in lithium-ion batteries. J Electrochem Soc 153:A329–A333CrossRef
18.
go back to reference Wang Q, Ping P, Zhao X et al. (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRef Wang Q, Ping P, Zhao X et al. (2012) Thermal runaway caused fire and explosion of lithium ion battery. J Power Sources 208:210–224CrossRef
19.
go back to reference Wang Q, Ping P, Sun J, Chen C (2011) The effect of mass ratio of electrolyte and electrodes on the thermal stabilities of electrodes used in lithium ion battery. Thermochim Acta 517:16–23CrossRef Wang Q, Ping P, Sun J, Chen C (2011) The effect of mass ratio of electrolyte and electrodes on the thermal stabilities of electrodes used in lithium ion battery. Thermochim Acta 517:16–23CrossRef
20.
go back to reference Ping P, Wang Q, Sun J et al. (2010) Thermal stabilities of some lithium salts and their electrolyte solutions with and without contact to a LiFePO4 electrode. J Electrochem Soc 157:A1170–A1176CrossRef Ping P, Wang Q, Sun J et al. (2010) Thermal stabilities of some lithium salts and their electrolyte solutions with and without contact to a LiFePO4 electrode. J Electrochem Soc 157:A1170–A1176CrossRef
21.
go back to reference Andersson P, Blomqvist P, Lorén A, Larsson F (2013) Investigation of fire emissions from Li-ion batteries. SP Technical Research Institute of Sweden Andersson P, Blomqvist P, Lorén A, Larsson F (2013) Investigation of fire emissions from Li-ion batteries. SP Technical Research Institute of Sweden
22.
go back to reference Mikolajczak C, Kahn M, White K, Long RT (2011) Lithium-ion batteries hazard and use assessment. Springer, New YorkCrossRef Mikolajczak C, Kahn M, White K, Long RT (2011) Lithium-ion batteries hazard and use assessment. Springer, New YorkCrossRef
23.
go back to reference Rhein R (1992) An experimental study of the use of liquid argon and argon-filled aqueous foams for the extinction of lithium fires. Fire Technol 28:290–316CrossRef Rhein R (1992) An experimental study of the use of liquid argon and argon-filled aqueous foams for the extinction of lithium fires. Fire Technol 28:290–316CrossRef
24.
go back to reference Rhein RA, Carlton CM (1993) Extinction of lithium fires: Thermodynamic computations and experimental data from literature. Fire Technol 29:100–130CrossRef Rhein RA, Carlton CM (1993) Extinction of lithium fires: Thermodynamic computations and experimental data from literature. Fire Technol 29:100–130CrossRef
Metadata
Title
The Efficiency of Heptafluoropropane Fire Extinguishing Agent on Suppressing the Lithium Titanate Battery Fire
Authors
Qingsong Wang
Guangzheng Shao
Qiangling Duan
Man Chen
Yongqi Li
Ke Wu
Bangjin Liu
Peng Peng
Jinhua Sun
Publication date
01-03-2016
Publisher
Springer US
Published in
Fire Technology / Issue 2/2016
Print ISSN: 0015-2684
Electronic ISSN: 1572-8099
DOI
https://doi.org/10.1007/s10694-015-0531-9

Other articles of this Issue 2/2016

Fire Technology 2/2016 Go to the issue