Skip to main content
Top
Published in: Colloid and Polymer Science 12/2018

04-11-2018 | Original Contribution

Polyethyleneimine-modified iron oxide nanoparticles: their synthesis and state in water and in solutions of ligands

Authors: Alexander N. Solodov, Julia R. Shayimova, Evgenia A. Burilova, Rustem R. Amirov

Published in: Colloid and Polymer Science | Issue 12/2018

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Water-soluble iron oxide nanoparticles (IONPs) are synthesized from oleate-stabilized particles (IONPs-OA) by replacing oleate moieties with 3,4-dihydroxybenzoic acid (3,4-DHB) and polyethyleneimine (PEI). Investigation of the obtained composite nanoparticles by TEM, SEM, and AFM methods demonstrated that the parent IONPs-OA particles have a narrow size distribution and that the size of the magnetite core (4.3 nm) was retained in the polyethyleneimine modified IONPs-PEI nanoparticles (4.5 nm). IONPs-PEI exist in the form of separate nanoparticles distributed in the bulk polymer matrix as well as elongated chains (up to 20 nm in length) consisting of 3–6 nanoparticles, and mostly in the form of large clusters (~ 150 nm). The NMR relaxometric properties of IONPs-PEI in the water at various pHs are determined. Relaxivity of such modified nanoparticles remains constant over a wide pH range (3–9) and decreases only in strongly alkaline solutions due to the destruction processes. In the presence of physiological amounts of NaCl (0.15 M), the relaxivity of IONPs-PEI solutions is reduced by 37%. The effect of the addition of various iron(III) chelators is analyzed. Tiron (disodium 4,5-dihydroxy-1,3-benzenedisulfonate) is the only ligand which destroys the polymer-bound IONP system in solution, dissolving the iron oxide core, while other ligands (3,4-DHB, 2,4-DHB, citric acid) do not reduce the relaxation of the composite aqueous solution. The developed polyethyleneimine-modified iron oxide nanoparticles can be regarded as a promising model of a contrast agent for magnetic resonance imaging (MRI).

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Appendix
Available only for authorised users
Literature
1.
go back to reference Cao G (2004) Nanostructures & nanomaterials: synthesis, properties & applications, Imperial college press Cao G (2004) Nanostructures & nanomaterials: synthesis, properties & applications, Imperial college press
2.
go back to reference Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40(2):696–753CrossRef Sanchez C, Belleville P, Popall M, Nicole L (2011) Applications of advanced hybrid organic–inorganic nanomaterials: from laboratory to market. Chem Soc Rev 40(2):696–753CrossRef
3.
go back to reference Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23(12) Barreto JA, O’Malley W, Kubeil M, Graham B, Stephan H, Spiccia L (2011) Nanomaterials: applications in cancer imaging and therapy. Adv Mater 23(12)
4.
go back to reference Edelstein A S, Cammaratra R (1998) Nanomaterials: Synthesis, properties and applications, CRC press Edelstein A S, Cammaratra R (1998) Nanomaterials: Synthesis, properties and applications, CRC press
5.
go back to reference Fu C, Ravindra NM (2012) Magnetic iron oxide nanoparticles: synthesis and applications. Bioinspired, Biomimetic and Nanobiomaterials 1(4):229–244CrossRef Fu C, Ravindra NM (2012) Magnetic iron oxide nanoparticles: synthesis and applications. Bioinspired, Biomimetic and Nanobiomaterials 1(4):229–244CrossRef
6.
go back to reference Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110CrossRef Laurent S, Forge D, Port M, Roch A, Robic C, Vander Elst L, Muller RN (2008) Magnetic iron oxide nanoparticles: synthesis, stabilization, vectorization, physicochemical characterizations, and biological applications. Chem Rev 108(6):2064–2110CrossRef
7.
go back to reference Rossi LM, Costa NJ, Silva FP, Wojcieszak R (2014) Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chem 16(6):2906–2933CrossRef Rossi LM, Costa NJ, Silva FP, Wojcieszak R (2014) Magnetic nanomaterials in catalysis: advanced catalysts for magnetic separation and beyond. Green Chem 16(6):2906–2933CrossRef
8.
go back to reference Teja AS, Koh P-Y (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55(1–2):22–45CrossRef Teja AS, Koh P-Y (2009) Synthesis, properties, and applications of magnetic iron oxide nanoparticles. Prog Cryst Growth Charact Mater 55(1–2):22–45CrossRef
9.
go back to reference Cornell R, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurences and uses.--Willey-VCH Verlag GmbH & co Cornell R, Schwertmann U (2003) The iron oxides: structure, properties, reactions, occurences and uses.--Willey-VCH Verlag GmbH & co
10.
go back to reference Cullity BD, Graham CD (2011) Introduction to magnetic materials, John Wiley & Sons Cullity BD, Graham CD (2011) Introduction to magnetic materials, John Wiley & Sons
11.
go back to reference Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X, Guo Z, Xu B (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc 126(32):9938–9939CrossRef Xu C, Xu K, Gu H, Zheng R, Liu H, Zhang X, Guo Z, Xu B (2004) Dopamine as a robust anchor to immobilize functional molecules on the iron oxide shell of magnetic nanoparticles. J Am Chem Soc 126(32):9938–9939CrossRef
12.
go back to reference Wen X, Yang J, He B, Gu Z (2008) Preparation of monodisperse magnetite nanoparticles under mild conditions. Curr Appl Phys 8(5):535–541CrossRef Wen X, Yang J, He B, Gu Z (2008) Preparation of monodisperse magnetite nanoparticles under mild conditions. Curr Appl Phys 8(5):535–541CrossRef
13.
go back to reference Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205CrossRef Sun S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124(28):8204–8205CrossRef
14.
go back to reference Lu Y, Yin Y, Mayers BT, Xia Y (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett 2(3):183–186CrossRef Lu Y, Yin Y, Mayers BT, Xia Y (2002) Modifying the surface properties of superparamagnetic iron oxide nanoparticles through a sol-gel approach. Nano Lett 2(3):183–186CrossRef
15.
go back to reference Lai CW, Low FW, Tai MF, Abdul Hamid SB (2017) Iron oxide nanoparticles decorated oleic acid for high colloidal stability. Adv Polym Technol Lai CW, Low FW, Tai MF, Abdul Hamid SB (2017) Iron oxide nanoparticles decorated oleic acid for high colloidal stability. Adv Polym Technol
16.
go back to reference Chanana M, Jahn S, Georgieva R, Lutz J-F, Baumler H, Wang D (2009) Fabrication of colloidal stable, thermosensitive, and biocompatible magnetite nanoparticles and study of their reversible agglomeration in aqueous milieu. Chem Mater 21(9):1906–1914CrossRef Chanana M, Jahn S, Georgieva R, Lutz J-F, Baumler H, Wang D (2009) Fabrication of colloidal stable, thermosensitive, and biocompatible magnetite nanoparticles and study of their reversible agglomeration in aqueous milieu. Chem Mater 21(9):1906–1914CrossRef
17.
go back to reference Aeineh N, Salehi F, Akrami M, Nemati F, Alipour M, Ghorbani M, Nikfar B, Salehian F, Riyahi Alam N, Sadat Ebrahimi SE, Foroumadi A, Khoobi M, Rouini M, Dibaei M, Haririan I, Ganjali MR, Safaei S (2018) Glutathione conjugated polyethylenimine on the surface of Fe3O4 magnetic nanoparticles as a theranostic agent for targeted and controlled curcumin delivery. J Biomater Sci Polym Ed 29(10):1109–1125. https://doi.org/10.1080/09205063.2018.1427013 CrossRef Aeineh N, Salehi F, Akrami M, Nemati F, Alipour M, Ghorbani M, Nikfar B, Salehian F, Riyahi Alam N, Sadat Ebrahimi SE, Foroumadi A, Khoobi M, Rouini M, Dibaei M, Haririan I, Ganjali MR, Safaei S (2018) Glutathione conjugated polyethylenimine on the surface of Fe3O4 magnetic nanoparticles as a theranostic agent for targeted and controlled curcumin delivery. J Biomater Sci Polym Ed 29(10):1109–1125. https://​doi.​org/​10.​1080/​09205063.​2018.​1427013 CrossRef
18.
go back to reference Ai H (2011) Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Adv Drug Deliv Rev 63(9):772–788CrossRef Ai H (2011) Layer-by-layer capsules for magnetic resonance imaging and drug delivery. Adv Drug Deliv Rev 63(9):772–788CrossRef
19.
go back to reference Drake P, Cho H-J, Shih P-S, Kao C-H, Lee K-F, Kuo C-H, Lin X-Z, Lin Y-J (2007) Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. J Mater Chem 17(46):4914CrossRef Drake P, Cho H-J, Shih P-S, Kao C-H, Lee K-F, Kuo C-H, Lin X-Z, Lin Y-J (2007) Gd-doped iron-oxide nanoparticles for tumour therapy via magnetic field hyperthermia. J Mater Chem 17(46):4914CrossRef
20.
go back to reference Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRef Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26(18):3995–4021CrossRef
21.
go back to reference Ni D, Bu W, Ehlerding EB, Cai W, Shi J (2017) Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev 46(23):7438–7468CrossRef Ni D, Bu W, Ehlerding EB, Cai W, Shi J (2017) Engineering of inorganic nanoparticles as magnetic resonance imaging contrast agents. Chem Soc Rev 46(23):7438–7468CrossRef
22.
go back to reference Schladt TD, Schneider K, Schild H, Tremel W (2011) Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans 40(24):6315–6343CrossRef Schladt TD, Schneider K, Schild H, Tremel W (2011) Synthesis and bio-functionalization of magnetic nanoparticles for medical diagnosis and treatment. Dalton Trans 40(24):6315–6343CrossRef
23.
go back to reference Song X, Gong H, Yin S, Cheng L, Wang C, Li Z, Li Y, Wang X, Liu G, Liu Z (2014) Ultra-small Iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv Funct Mater, 24 (9) Song X, Gong H, Yin S, Cheng L, Wang C, Li Z, Li Y, Wang X, Liu G, Liu Z (2014) Ultra-small Iron oxide doped polypyrrole nanoparticles for in vivo multimodal imaging guided photothermal therapy. Adv Funct Mater, 24 (9)
24.
go back to reference Thorat ND, Lemine OM, Bohara RA, Omri K, El Mir L, Tofail SA (2016) Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications. Phys Chem Chem Phys 18(31):21331–21339CrossRef Thorat ND, Lemine OM, Bohara RA, Omri K, El Mir L, Tofail SA (2016) Superparamagnetic iron oxide nanocargoes for combined cancer thermotherapy and MRI applications. Phys Chem Chem Phys 18(31):21331–21339CrossRef
25.
go back to reference Sosa-Acosta JR, Silva JA, Fernández-Izquierdo L, Díaz-Castañón S, Ortiz M, Zuaznabar-Gardona JC, Díaz-García AM (2018) Iron oxide nanoparticles (IONPs) with potential applications in plasmid DNA isolation. Colloids Surf A Physicochem Eng Asp 545:167–178CrossRef Sosa-Acosta JR, Silva JA, Fernández-Izquierdo L, Díaz-Castañón S, Ortiz M, Zuaznabar-Gardona JC, Díaz-García AM (2018) Iron oxide nanoparticles (IONPs) with potential applications in plasmid DNA isolation. Colloids Surf A Physicochem Eng Asp 545:167–178CrossRef
26.
go back to reference Zaaeri F, Khoobi M, Rouini M, Akbari Javar H (2017) pH-responsive polymer in a core–shell magnetic structure as an efficient carrier for delivery of doxorubicin to tumor cells. Int J Polym Mater Polym Biomater, 1–11 Zaaeri F, Khoobi M, Rouini M, Akbari Javar H (2017) pH-responsive polymer in a core–shell magnetic structure as an efficient carrier for delivery of doxorubicin to tumor cells. Int J Polym Mater Polym Biomater, 1–11
27.
go back to reference Belanova AA, Gavalas N, Makarenko YM, Belousova MM, Soldatov AV, Zolotukhin PV (2018) Physicochemical properties of magnetic nanoparticles: implications for biomedical applications in vitro and in vivo. Oncol Res Treat 41(3):139–143. https://doi.org/10.1159/000485020 CrossRef Belanova AA, Gavalas N, Makarenko YM, Belousova MM, Soldatov AV, Zolotukhin PV (2018) Physicochemical properties of magnetic nanoparticles: implications for biomedical applications in vitro and in vivo. Oncol Res Treat 41(3):139–143. https://​doi.​org/​10.​1159/​000485020 CrossRef
28.
go back to reference Petri-Fink A, Steitz B, Finka A, Salaklang J, Hofmann H (2008) Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. Eur J Pharm Biopharm 68(1):129–137CrossRef Petri-Fink A, Steitz B, Finka A, Salaklang J, Hofmann H (2008) Effect of cell media on polymer coated superparamagnetic iron oxide nanoparticles (SPIONs): colloidal stability, cytotoxicity, and cellular uptake studies. Eur J Pharm Biopharm 68(1):129–137CrossRef
29.
go back to reference Mosaiab T, Jeong CJ, Shin GJ, Choi KH, Lee SK, Lee I, In I, Park SY (2013) Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. Mater Sci Eng C Mater Biol Appl 33(7):3786–3794CrossRef Mosaiab T, Jeong CJ, Shin GJ, Choi KH, Lee SK, Lee I, In I, Park SY (2013) Recyclable and stable silver deposited magnetic nanoparticles with poly (vinyl pyrrolidone)-catechol coated iron oxide for antimicrobial activity. Mater Sci Eng C Mater Biol Appl 33(7):3786–3794CrossRef
30.
go back to reference Soares PI, Sousa AI, Ferreira IM, Novo CM, Borges JP (2016) Towards the development of multifunctional chitosan-based iron oxide nanoparticles: optimization and modelling of doxorubicin release. Carbohydr Polym 153:212–221CrossRef Soares PI, Sousa AI, Ferreira IM, Novo CM, Borges JP (2016) Towards the development of multifunctional chitosan-based iron oxide nanoparticles: optimization and modelling of doxorubicin release. Carbohydr Polym 153:212–221CrossRef
31.
go back to reference Cai H, An X, Cui J, Li J, Wen S, Li K, Shen M, Zheng L, Zhang G, Shi X (2013) Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl Mater Interfaces 5(5):1722–1731CrossRef Cai H, An X, Cui J, Li J, Wen S, Li K, Shen M, Zheng L, Zhang G, Shi X (2013) Facile hydrothermal synthesis and surface functionalization of polyethyleneimine-coated iron oxide nanoparticles for biomedical applications. ACS Appl Mater Interfaces 5(5):1722–1731CrossRef
32.
go back to reference Goon IY, Lai LM, Lim M, Munroe P, Gooding JJ, Amal R (2009) Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: systematic control using polyethyleneimine. Chem Mater 21(4):673–681CrossRef Goon IY, Lai LM, Lim M, Munroe P, Gooding JJ, Amal R (2009) Fabrication and dispersion of gold-shell-protected magnetite nanoparticles: systematic control using polyethyleneimine. Chem Mater 21(4):673–681CrossRef
33.
go back to reference Korpany KV, Habib F, Murugesu M, Blum AS (2013) Stable water-soluble iron oxide nanoparticles using Tiron. Mater Chem Phys 138(1):29–37CrossRef Korpany KV, Habib F, Murugesu M, Blum AS (2013) Stable water-soluble iron oxide nanoparticles using Tiron. Mater Chem Phys 138(1):29–37CrossRef
34.
go back to reference Korpany KV, Majewski DD, Chiu CT, Cross SN, Blum AS (2017) Iron oxide surface chemistry: effect of chemical structure on binding in benzoic acid and catechol derivatives. Langmuir 33(12):3000–3013CrossRef Korpany KV, Majewski DD, Chiu CT, Cross SN, Blum AS (2017) Iron oxide surface chemistry: effect of chemical structure on binding in benzoic acid and catechol derivatives. Langmuir 33(12):3000–3013CrossRef
35.
go back to reference Berry CC, Wells S, Charles S, Curtis AS (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24(25):4551–4557CrossRef Berry CC, Wells S, Charles S, Curtis AS (2003) Dextran and albumin derivatised iron oxide nanoparticles: influence on fibroblasts in vitro. Biomaterials 24(25):4551–4557CrossRef
36.
go back to reference Xie J, Xu C, Kohler N, Hou Y, Sun S (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19(20):3163–3166CrossRef Xie J, Xu C, Kohler N, Hou Y, Sun S (2007) Controlled PEGylation of monodisperse Fe3O4 nanoparticles for reduced non-specific uptake by macrophage cells. Adv Mater 19(20):3163–3166CrossRef
37.
go back to reference Do MA, Yoon GJ, Yeum JH, Han M, Chang Y, Choi JH (2014) Polyethyleneimine-mediated synthesis of superparamagnetic iron oxide nanoparticles with enhanced sensitivity in T2 magnetic resonance imaging. Colloids Surf B 122:752–759CrossRef Do MA, Yoon GJ, Yeum JH, Han M, Chang Y, Choi JH (2014) Polyethyleneimine-mediated synthesis of superparamagnetic iron oxide nanoparticles with enhanced sensitivity in T2 magnetic resonance imaging. Colloids Surf B 122:752–759CrossRef
39.
go back to reference Chertok B, David AE, Yang VC (2010) Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials, 31 (24), 6317–24CrossRef Chertok B, David AE, Yang VC (2010) Polyethyleneimine-modified iron oxide nanoparticles for brain tumor drug delivery using magnetic targeting and intra-carotid administration. Biomaterials, 31 (24), 6317–24CrossRef
40.
go back to reference Luo D, Shahid S, Hasan SM, Whiley R, Sukhorukov GB, Cattell MJ (2018) Controlled release of chlorhexidine from a HEMA-UDMA resin using a magnetic field. Dent Mater 34(5):764–775CrossRef Luo D, Shahid S, Hasan SM, Whiley R, Sukhorukov GB, Cattell MJ (2018) Controlled release of chlorhexidine from a HEMA-UDMA resin using a magnetic field. Dent Mater 34(5):764–775CrossRef
41.
go back to reference Shen T, Zhu W, Yang L, Liu L, Jin R, Duan J, Anderson JM, Ai H (2018) Lactosylated N-alkyl polyethylenimine coated iron oxide nanoparticles induced autophagy in mouse dendritic cells. Regen Biomater 5:141–149CrossRef Shen T, Zhu W, Yang L, Liu L, Jin R, Duan J, Anderson JM, Ai H (2018) Lactosylated N-alkyl polyethylenimine coated iron oxide nanoparticles induced autophagy in mouse dendritic cells. Regen Biomater 5:141–149CrossRef
42.
go back to reference Thünemann AF, Schütt D, Kaufner L, Pison U, Möhwald H (2006) Maghemite nanoparticles protectively coated with poly (ethylene imine) and poly (ethylene oxide)-b lock-poly (glutamic acid). Langmuir 22(5):2351–2357CrossRef Thünemann AF, Schütt D, Kaufner L, Pison U, Möhwald H (2006) Maghemite nanoparticles protectively coated with poly (ethylene imine) and poly (ethylene oxide)-b lock-poly (glutamic acid). Langmuir 22(5):2351–2357CrossRef
43.
go back to reference Schweiger C, Pietzonka C, Heverhagen J, Kissel T (2011) Novel magnetic iron oxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: synthesis, stability, cytotoxicity and MR imaging. Int J Pharm 408(1–2):130–137CrossRef Schweiger C, Pietzonka C, Heverhagen J, Kissel T (2011) Novel magnetic iron oxide nanoparticles coated with poly(ethylene imine)-g-poly(ethylene glycol) for potential biomedical application: synthesis, stability, cytotoxicity and MR imaging. Int J Pharm 408(1–2):130–137CrossRef
44.
go back to reference Shen M, Wang SH, Shi X, Chen X, Huang Q, Petersen EJ, Pinto RA, Baker Jr JR, Weber Jr WJ (2009) Polyethyleneimine-mediated functionalization of multiwalled carbon nanotubes: synthesis, characterization, and in vitro toxicity assay. J Phys Chem C 113(8):3150–3156CrossRef Shen M, Wang SH, Shi X, Chen X, Huang Q, Petersen EJ, Pinto RA, Baker Jr JR, Weber Jr WJ (2009) Polyethyleneimine-mediated functionalization of multiwalled carbon nanotubes: synthesis, characterization, and in vitro toxicity assay. J Phys Chem C 113(8):3150–3156CrossRef
45.
go back to reference Chen B, Liu Y, Chen S, Zhao X, Meng X, Pan X (2016) Magnetically recoverable cross-linked polyethylenimine as a novel adsorbent for removal of anionic dyes with different structures from aqueous solution. J Taiwan Inst Chem Eng 67:191–201CrossRef Chen B, Liu Y, Chen S, Zhao X, Meng X, Pan X (2016) Magnetically recoverable cross-linked polyethylenimine as a novel adsorbent for removal of anionic dyes with different structures from aqueous solution. J Taiwan Inst Chem Eng 67:191–201CrossRef
46.
go back to reference Saharan P, Chaudhary GR, Mehta SK, Umar A (2014) Removal of water contaminants by iron oxide nanomaterials. J Nanosci Nanotechnol 14(1):627–643CrossRef Saharan P, Chaudhary GR, Mehta SK, Umar A (2014) Removal of water contaminants by iron oxide nanomaterials. J Nanosci Nanotechnol 14(1):627–643CrossRef
47.
go back to reference Jiang W, Wu Y, He B, Zeng X, Lai K, Gu Z (2010) Effect of sodium oleate as a buffer on the synthesis of superparamagnetic magnetite colloids. J Colloid Interface Sci 347(1):1–7CrossRef Jiang W, Wu Y, He B, Zeng X, Lai K, Gu Z (2010) Effect of sodium oleate as a buffer on the synthesis of superparamagnetic magnetite colloids. J Colloid Interface Sci 347(1):1–7CrossRef
48.
go back to reference Jiang W, Lai K-L, Hu H, Zeng X-B, Lan F, Liu K-X, Wu Y, Gu Z-W (2011) The effect of [Fe3+]/[Fe2+] molar ratio and iron salts concentration on the properties of superparamagnetic iron oxide nanoparticles in the water/ethanol/toluene system. J Nanopart Res 13(10):5135–5145CrossRef Jiang W, Lai K-L, Hu H, Zeng X-B, Lan F, Liu K-X, Wu Y, Gu Z-W (2011) The effect of [Fe3+]/[Fe2+] molar ratio and iron salts concentration on the properties of superparamagnetic iron oxide nanoparticles in the water/ethanol/toluene system. J Nanopart Res 13(10):5135–5145CrossRef
49.
go back to reference Yuen AK, Hutton GA, Masters AF, Maschmeyer T (2012) The interplay of catechol ligands with nanoparticulate iron oxides. Dalton Trans 41(9):2545–2559CrossRef Yuen AK, Hutton GA, Masters AF, Maschmeyer T (2012) The interplay of catechol ligands with nanoparticulate iron oxides. Dalton Trans 41(9):2545–2559CrossRef
50.
go back to reference Na HB, Palui G, Rosenberg JT, Ji X, Grant SC, Mattoussi H (2011) Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles. ACS Nano 6(1):389–399CrossRef Na HB, Palui G, Rosenberg JT, Ji X, Grant SC, Mattoussi H (2011) Multidentate catechol-based polyethylene glycol oligomers provide enhanced stability and biocompatibility to iron oxide nanoparticles. ACS Nano 6(1):389–399CrossRef
51.
go back to reference Huang Q, Fang L, Chen X, Saleem M (2011) Effect of polyethyleneimine on the growth of ZnO nanorod arrays and their application in dye-sensitized solar cells. J Alloys Compd 509(39):9456–9459CrossRef Huang Q, Fang L, Chen X, Saleem M (2011) Effect of polyethyleneimine on the growth of ZnO nanorod arrays and their application in dye-sensitized solar cells. J Alloys Compd 509(39):9456–9459CrossRef
52.
go back to reference Hossaini Nasr S, Tonson A, El-Dakdouki MH, Zhu DC, Agnew D, Wiseman R, Qian C, Huang X (2018) Effects of nanoprobe morphology on cellular binding and inflammatory responses: Hyaluronan-conjugated magnetic nanoworms for magnetic resonance imaging of atherosclerotic plaques. ACS Appl Mater Interfaces 10(14):11495–11507CrossRef Hossaini Nasr S, Tonson A, El-Dakdouki MH, Zhu DC, Agnew D, Wiseman R, Qian C, Huang X (2018) Effects of nanoprobe morphology on cellular binding and inflammatory responses: Hyaluronan-conjugated magnetic nanoworms for magnetic resonance imaging of atherosclerotic plaques. ACS Appl Mater Interfaces 10(14):11495–11507CrossRef
53.
go back to reference Dodoo S, Steitz R, Laschewsky A, von Klitzing R (2011) Effect of ionic strength and type of ions on the structure of water swollen polyelectrolyte multilayers. Phys Chem Chem Phys 13(21):10318–10325CrossRef Dodoo S, Steitz R, Laschewsky A, von Klitzing R (2011) Effect of ionic strength and type of ions on the structure of water swollen polyelectrolyte multilayers. Phys Chem Chem Phys 13(21):10318–10325CrossRef
Metadata
Title
Polyethyleneimine-modified iron oxide nanoparticles: their synthesis and state in water and in solutions of ligands
Authors
Alexander N. Solodov
Julia R. Shayimova
Evgenia A. Burilova
Rustem R. Amirov
Publication date
04-11-2018
Publisher
Springer Berlin Heidelberg
Published in
Colloid and Polymer Science / Issue 12/2018
Print ISSN: 0303-402X
Electronic ISSN: 1435-1536
DOI
https://doi.org/10.1007/s00396-018-4425-5

Other articles of this Issue 12/2018

Colloid and Polymer Science 12/2018 Go to the issue

Premium Partners