Skip to main content
Top
Published in: Polymer Science, Series D 1/2023

01-03-2023

Polymer Composites Based on Polylactide and Reduced Graphene Oxide

Authors: S. Z. Rogovina, S. M. Lomakin, M. M. Gasymov, O. P. Kuznetsova, V. G. Shevchenko, V. P. Mel’nikov, A. A. Berlin

Published in: Polymer Science, Series D | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Filled composites of polylactide with reduced graphene oxide of various compositions are obtained under conditions of solid-phase mixing under the action of shear deformations. The thermophysical behavior of polylactide in compositions have been studied, and the corresponding temperatures and heats of thermal transitions have been determined. The method of thermogravimetric analysis has shown there is an increase in the thermal stability of the compositions, which increases with a rise in the filler content. Based on the results of differential scanning calorimetry, the effect of reduced graphene oxide on the crystallization of polylactide has been established. The mechanical properties of the compositions are studied, and the effect of the filler content on the change in mechanical characteristics is shown. When studying the electrical properties of the composites, it is found that the direct-current conductivity is zero and does not depend on the filler concentration, which indicates an uneven distribution of the filler in the polymer matrix.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference S. S. Ray and M. Okamoto, “Biodegradable polylactide and its nanocomposites: Opening a new dimension for plastics and composites,” Macromol. Rapid. Comm. 24, 815–840 (2003).CrossRef S. S. Ray and M. Okamoto, “Biodegradable polylactide and its nanocomposites: Opening a new dimension for plastics and composites,” Macromol. Rapid. Comm. 24, 815–840 (2003).CrossRef
2.
go back to reference J. L. Feijoo, L. Cabedom, E. Gilmenez, J. M. Lagaron, and J. J. Saura, “Development of amorphous PLA-montmorillonite nanocomposites,” J. Mater. Sci. 40, 1785–1788 (2005).CrossRef J. L. Feijoo, L. Cabedom, E. Gilmenez, J. M. Lagaron, and J. J. Saura, “Development of amorphous PLA-montmorillonite nanocomposites,” J. Mater. Sci. 40, 1785–1788 (2005).CrossRef
3.
go back to reference K. Madhavan, N. R. Nampoothiri, and R. P. Nair, “An overview of the recent developments in polylactide (PLA) research,” Bioresour. Technol. 101, 8493–8501 (2010).CrossRef K. Madhavan, N. R. Nampoothiri, and R. P. Nair, “An overview of the recent developments in polylactide (PLA) research,” Bioresour. Technol. 101, 8493–8501 (2010).CrossRef
4.
go back to reference B. Gupta, N. Revagade, and J. Ailborn, “Poly (lactic acid) fiber: An overview,” Prog. Polymer. Sci. 32, 455–482 (2007).CrossRef B. Gupta, N. Revagade, and J. Ailborn, “Poly (lactic acid) fiber: An overview,” Prog. Polymer. Sci. 32, 455–482 (2007).CrossRef
5.
go back to reference M. Zhang, X. Ding, Y. Zhan, Y. Wang, and X. Wang, “Improving the flame retardancy of poly (lactic acid) using an efficient ternary hybrid flame retardant by dual modification of graphene oxide with phenylphosphinic acid and nano MOFs,” J. Hazard. Mater 384, 121260 (2020).CrossRefPubMed M. Zhang, X. Ding, Y. Zhan, Y. Wang, and X. Wang, “Improving the flame retardancy of poly (lactic acid) using an efficient ternary hybrid flame retardant by dual modification of graphene oxide with phenylphosphinic acid and nano MOFs,” J. Hazard. Mater 384, 121260 (2020).CrossRefPubMed
6.
go back to reference B. Tawiah, B. Yu, R. Yuen, Y. Hu, R. Wei, J. Xin, and B. Fei, “Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly (lactic acid) nanocomposites,” Carbon (New York), 150, 10–29 (2019). B. Tawiah, B. Yu, R. Yuen, Y. Hu, R. Wei, J. Xin, and B. Fei, “Highly efficient flame retardant and smoke suppression mechanism of boron modified graphene oxide/poly (lactic acid) nanocomposites,” Carbon (New York), 150, 10–29 (2019).
7.
go back to reference D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39, 228–240 (2010).CrossRefPubMed D. R. Dreyer, S. Park, C. W. Bielawski, and R. S. Ruoff, “The chemistry of graphene oxide,” Chem. Soc. Rev. 39, 228–240 (2010).CrossRefPubMed
8.
go back to reference E. F. Sheka, I. Natkaniec, V. Melnikov, and K. Druzbicki, “Neutron scattering from graphene oxide paper and thermally exfoliated reduced graphene oxide,” Nanosyst. Physics. Chem. Math. P, 378–393 (2015). E. F. Sheka, I. Natkaniec, V. Melnikov, and K. Druzbicki, “Neutron scattering from graphene oxide paper and thermally exfoliated reduced graphene oxide,” Nanosyst. Physics. Chem. Math. P, 378–393 (2015).
9.
go back to reference W. Gao, “The Chemistry of Graphene Oxide,” in Graphene Oxide (Springer Int., Cham, 2015), pp. 61–95.CrossRef W. Gao, “The Chemistry of Graphene Oxide,” in Graphene Oxide (Springer Int., Cham, 2015), pp. 61–95.CrossRef
10.
go back to reference S. K. Tiwari, S. Sahoo, N. Wang, and A. Huczko, “Graphene research and their outputs: Status and prospect,” J. Sci. Adv. Mater. Devices 5, 10–29 (2020).CrossRef S. K. Tiwari, S. Sahoo, N. Wang, and A. Huczko, “Graphene research and their outputs: Status and prospect,” J. Sci. Adv. Mater. Devices 5, 10–29 (2020).CrossRef
11.
go back to reference S. Y. Toh, S. K. Loh, S. K. Kamarudin, and W. R. W. Daud, “Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation,” Chem. Eng. J. 251, 422–434 (2014).CrossRef S. Y. Toh, S. K. Loh, S. K. Kamarudin, and W. R. W. Daud, “Graphene production via electrochemical reduction of graphene oxide: Synthesis and characterisation,” Chem. Eng. J. 251, 422–434 (2014).CrossRef
12.
go back to reference K. K. H. De Silva, H. H. Huang, R. K. Joshi, and M. Yoshimura, “Chemical reduction of graphene oxide using green reductants,” Carbon (New York) 119, 190–199 (2017). K. K. H. De Silva, H. H. Huang, R. K. Joshi, and M. Yoshimura, “Chemical reduction of graphene oxide using green reductants,” Carbon (New York) 119, 190–199 (2017).
13.
go back to reference G. Williams, B. Seger, and P. Kamat, “TiO2-graphene nanocomposites. UV assisted photocatalytic reduction of graphene oxide,” ACS Nano 2, 1487–1491 (2008).CrossRefPubMed G. Williams, B. Seger, and P. Kamat, “TiO2-graphene nanocomposites. UV assisted photocatalytic reduction of graphene oxide,” ACS Nano 2, 1487–1491 (2008).CrossRefPubMed
14.
go back to reference C. Li, Z. Zhuang, X. Jin, and Z. Chen, “A facile and green preparation of reduced graphene oxide using eucalyptus leaf extract,” Appl. Surf. Sci. 422, 469–474 (2017).CrossRef C. Li, Z. Zhuang, X. Jin, and Z. Chen, “A facile and green preparation of reduced graphene oxide using eucalyptus leaf extract,” Appl. Surf. Sci. 422, 469–474 (2017).CrossRef
15.
go back to reference S. Rella, M. Acocella, S. Colella, G. Guerra, and A. Listorti, “X-ray photoelectron spectroscopy of reduced graphene oxide prepared by a novel green method,” Vacuum 119, 159–162 (2015).CrossRef S. Rella, M. Acocella, S. Colella, G. Guerra, and A. Listorti, “X-ray photoelectron spectroscopy of reduced graphene oxide prepared by a novel green method,” Vacuum 119, 159–162 (2015).CrossRef
16.
go back to reference J. Móczó and B. Pukánszky, Encyclopedia of Polymers and Composites (Springer, Berlin 2016), pp. 1–43. J. Móczó and B. Pukánszky, Encyclopedia of Polymers and Composites (Springer, Berlin 2016), pp. 1–43.
17.
go back to reference A. K. Jonscher, “The “universal” dielectric response,” Nature 267, 673–679 (1977).CrossRef A. K. Jonscher, “The “universal” dielectric response,” Nature 267, 673–679 (1977).CrossRef
18.
go back to reference E. R. Blait and D. Blur, Electrical Properties of Polymers (Cambridge Univ. Press, Cambridge, 2005; Fizmatlit, Moscow, 2008). E. R. Blait and D. Blur, Electrical Properties of Polymers (Cambridge Univ. Press, Cambridge, 2005; Fizmatlit, Moscow, 2008).
Metadata
Title
Polymer Composites Based on Polylactide and Reduced Graphene Oxide
Authors
S. Z. Rogovina
S. M. Lomakin
M. M. Gasymov
O. P. Kuznetsova
V. G. Shevchenko
V. P. Mel’nikov
A. A. Berlin
Publication date
01-03-2023
Publisher
Pleiades Publishing
Published in
Polymer Science, Series D / Issue 1/2023
Print ISSN: 1995-4212
Electronic ISSN: 1995-4220
DOI
https://doi.org/10.1134/S1995421223010252

Other articles of this Issue 1/2023

Polymer Science, Series D 1/2023 Go to the issue

Premium Partners