Skip to main content
Top
Published in: Polymer Science, Series D 1/2023

01-03-2023

A Comparative Assessment of the Influence of Modification with Thermoplastic Powders on the Residual Compressive Strength of the Carbon Fiber Reinforced Polymers

Authors: E. Sh. Imametdinov, S. V. Kondrashov, I. N. Gulyaev, I. V. Terekhov

Published in: Polymer Science, Series D | Issue 1/2023

Log in

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

The influence of a dispersed filler located between the layers of a continuous reinforcing filler has been studied on the characteristic of residual compressive strength after impact of carbon fiber reinforced polymer based on SYT-49S high-strength carbon tow filler (People’s Republic of China) and VSE‑1212 epoxy matrix. Microstructural studies of the powders of various nature have been presented (the particle sizes have been determined, and the microstructure of these powders has been given) used as a dispersed filler. The following have been presented and analyzed: diagrams obtained as a result of a low-speed impact and C-scans of nondestructive ultrasonic testing after impact of the carbon fiber samples, as well as the results of compression after impact for these carbon fiber samples.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference E. N. Kablov, “Marketing of materials science, aircraft engineering and industry: Present and future,” Direktor po Marketingu i Sbytu, Nos. 5–6, 40–44 (2017). E. N. Kablov, “Marketing of materials science, aircraft engineering and industry: Present and future,” Direktor po Marketingu i Sbytu, Nos. 5–6, 40–44 (2017).
3.
go back to reference E. N. Kablov, L. V. Chursova, A. N. Babin, R. R. Mukhametov, and N. N. Panina, “Developments of FSUE ‘VIAM’ in the field of melt binders for polymer composite materials,” Polim. Mater. Tekhnol. 2 (2), 37–42 (2016). E. N. Kablov, L. V. Chursova, A. N. Babin, R. R. Mukhametov, and N. N. Panina, “Developments of FSUE ‘VIAM’ in the field of melt binders for polymer composite materials,” Polim. Mater. Tekhnol. 2 (2), 37–42 (2016).
4.
go back to reference E. N. Kablov, “Next generation materials and digital technologies for their processing,” Vestn. Ross. Akad. Nauk 90, 331–334 (2020). E. N. Kablov, “Next generation materials and digital technologies for their processing,” Vestn. Ross. Akad. Nauk 90, 331–334 (2020).
5.
go back to reference H. Lengsfeld, F. Wolff-Fabris, J. Kramer, J. Lacalle, and V. Altstadt, Composite Technology. Prepregs and Monolithic Part Fabrication Technologies (Carl Hanser Verlag, 2015), p. 20.CrossRef H. Lengsfeld, F. Wolff-Fabris, J. Kramer, J. Lacalle, and V. Altstadt, Composite Technology. Prepregs and Monolithic Part Fabrication Technologies (Carl Hanser Verlag, 2015), p. 20.CrossRef
6.
go back to reference M. V. Lobanov, A. I. Gulyaev, and A. N. Babin, “Improvement of the impact and crack resistance of epoxy thermosets and thermoset-based composites with the use of thermoplastics as modifiers,” Polym. Sci., Ser. B 58, 5–16 (2016).CrossRef M. V. Lobanov, A. I. Gulyaev, and A. N. Babin, “Improvement of the impact and crack resistance of epoxy thermosets and thermoset-based composites with the use of thermoplastics as modifiers,” Polym. Sci., Ser. B 58, 5–16 (2016).CrossRef
7.
go back to reference B. G. Nesterenko and G. I. Nesterenko, “Design resource of aging transport aircraft,” Nauch. Vestn. Mosk. Gos. Tekh. Univ. Grazhdan. Aviats. 199, 11–22 (2014). B. G. Nesterenko and G. I. Nesterenko, “Design resource of aging transport aircraft,” Nauch. Vestn. Mosk. Gos. Tekh. Univ. Grazhdan. Aviats. 199, 11–22 (2014).
8.
go back to reference X. C. Sun and S. R. Hallett, “Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study,” Compos. Part A: Appl. Sci. Manuf. 104, 41–59 (2018).CrossRef X. C. Sun and S. R. Hallett, “Failure mechanisms and damage evolution of laminated composites under compression after impact (CAI): Experimental and numerical study,” Compos. Part A: Appl. Sci. Manuf. 104, 41–59 (2018).CrossRef
9.
go back to reference H. Tuo, Z. Lu, and X. Ma, “Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions,” Compos. Part B: Eng. 163, 642–650 (2019).CrossRef H. Tuo, Z. Lu, and X. Ma, “Damage and failure mechanism of thin composite laminates under low-velocity impact and compression-after-impact loading conditions,” Compos. Part B: Eng. 163, 642–650 (2019).CrossRef
10.
go back to reference I. K. Giannopoulos, E. E. Theotokoglou, and X. Zhang, “Impact damage and CAI strength of a woven CFRP material with fire retardant properties,” Compos. Part B: Eng. 91, 8–17 (2016).CrossRef I. K. Giannopoulos, E. E. Theotokoglou, and X. Zhang, “Impact damage and CAI strength of a woven CFRP material with fire retardant properties,” Compos. Part B: Eng. 91, 8–17 (2016).CrossRef
13.
go back to reference K. R. Hart, P. X. Chia, and L. E. Sheridan, “Mechanisms and characterization of impact damage in 2D and 3D-woven fiber-reinforced composites,” Compos. Part A: Appl. Sci. Manuf. 101, 432–443 (2017).CrossRef K. R. Hart, P. X. Chia, and L. E. Sheridan, “Mechanisms and characterization of impact damage in 2D and 3D-woven fiber-reinforced composites,” Compos. Part A: Appl. Sci. Manuf. 101, 432–443 (2017).CrossRef
14.
go back to reference W. Tan, B. Falzon, and L. Chiu, “Predicting low velocity impact damage and compression-after-impact (CAI) behavior of composite laminates,” Compos. Part A: Appl. Sci. Manuf. 71, 212–226 (2015).CrossRef W. Tan, B. Falzon, and L. Chiu, “Predicting low velocity impact damage and compression-after-impact (CAI) behavior of composite laminates,” Compos. Part A: Appl. Sci. Manuf. 71, 212–226 (2015).CrossRef
15.
go back to reference P. Rozylo, H. Debski, and T. Kubiak, “A model of low-velocity impact damage of composite plates subjected to compression-after-impact (CAI) testing,” Compos. Struct. 181, 158–170 (2017).CrossRef P. Rozylo, H. Debski, and T. Kubiak, “A model of low-velocity impact damage of composite plates subjected to compression-after-impact (CAI) testing,” Compos. Struct. 181, 158–170 (2017).CrossRef
16.
go back to reference H. Liu, B. G. Falzon, and W. Tan, “Predicting the compression-after-impact (CAI) strength of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates,” Compos. Part A: Appl. Sci. Manuf. 105, 189–202 (2018).CrossRef H. Liu, B. G. Falzon, and W. Tan, “Predicting the compression-after-impact (CAI) strength of damage-tolerant hybrid unidirectional/woven carbon-fibre reinforced composite laminates,” Compos. Part A: Appl. Sci. Manuf. 105, 189–202 (2018).CrossRef
17.
go back to reference T. A. Sebaey, E. V. Gonzalez, and C. S. Lopes, “Damage resistance and damage tolerance of dispersed CFRP laminates: Effect of ply clustering,” Compos. Struct. 106, 96–103 (2013).CrossRef T. A. Sebaey, E. V. Gonzalez, and C. S. Lopes, “Damage resistance and damage tolerance of dispersed CFRP laminates: Effect of ply clustering,” Compos. Struct. 106, 96–103 (2013).CrossRef
18.
go back to reference Ch. Leopold, M. Schutt, W. V. Liebig, T. Philipkowski, and J. Kurten, “Compression fracture of CFRP laminates containing stress intensifications,” Materials 10, 1039 (2017).CrossRefPubMedPubMedCentral Ch. Leopold, M. Schutt, W. V. Liebig, T. Philipkowski, and J. Kurten, “Compression fracture of CFRP laminates containing stress intensifications,” Materials 10, 1039 (2017).CrossRefPubMedPubMedCentral
19.
go back to reference A. Sasikumar, D. Trias, and J. Costa, “Effect of ply thickness and ply level hybridization on the compression after impact strength of thin laminates,” Compos. Part A: Appl. Sci. Manuf. 121, 232–243 (2019).CrossRef A. Sasikumar, D. Trias, and J. Costa, “Effect of ply thickness and ply level hybridization on the compression after impact strength of thin laminates,” Compos. Part A: Appl. Sci. Manuf. 121, 232–243 (2019).CrossRef
20.
go back to reference A. Sasikumar, D. Trias, and J. Costa, “Mitigating the weak impact response of thin-ply based thin laminates through an unsymmetrical laminate design incorporating intermediate grade plies,” Compos. Struct. 220, 93–104 (2019).CrossRef A. Sasikumar, D. Trias, and J. Costa, “Mitigating the weak impact response of thin-ply based thin laminates through an unsymmetrical laminate design incorporating intermediate grade plies,” Compos. Struct. 220, 93–104 (2019).CrossRef
21.
go back to reference H. Ullah and V. V. Silberschmidt, “Numerical analysis of the interactive damage mechanisms in two-dimensional carbon fabric-reinforced thermoplastic composites under low velocity impacts,” J. Compos. Mater. 49, 3127– 3143 (2015).CrossRef H. Ullah and V. V. Silberschmidt, “Numerical analysis of the interactive damage mechanisms in two-dimensional carbon fabric-reinforced thermoplastic composites under low velocity impacts,” J. Compos. Mater. 49, 3127– 3143 (2015).CrossRef
22.
go back to reference B. Vieille, V. M. Casado, and C. Bouvet, “Influence of matrix toughness and ductility on the compression-after-impact behavior of woven-ply thermoplastic-and thermosetting-composites: A comparative study,” Compos. Struct. 110, 207–218 (2014).CrossRef B. Vieille, V. M. Casado, and C. Bouvet, “Influence of matrix toughness and ductility on the compression-after-impact behavior of woven-ply thermoplastic-and thermosetting-composites: A comparative study,” Compos. Struct. 110, 207–218 (2014).CrossRef
24.
go back to reference X. Xu, Z. Zhou, and Y. Hei, “Improving compression-after-impact performance of carbon-fiber composites by CNTs/Thermoplastic hybrid film interlayer,” Compos. Sci. Technol. 95, 75–81 (2014).CrossRef X. Xu, Z. Zhou, and Y. Hei, “Improving compression-after-impact performance of carbon-fiber composites by CNTs/Thermoplastic hybrid film interlayer,” Compos. Sci. Technol. 95, 75–81 (2014).CrossRef
25.
go back to reference A. T. Nettles and L. L. Scharber, “The influence of GI and GII on the compression after impact strength of carbon fiber/epoxy laminates and sandwich structure,” NASA/TP-2017-219635 (2017). A. T. Nettles and L. L. Scharber, “The influence of GI and GII on the compression after impact strength of carbon fiber/epoxy laminates and sandwich structure,” NASA/TP-2017-219635 (2017).
26.
go back to reference I. K. Giannopoulos, E. T. Efstathios, and X. Zhang, “Impact damage and CAI strength of a woven CFRP material with fire retardant properties,” Compos. Part B: Eng. 91, 8–17 (2016).CrossRef I. K. Giannopoulos, E. T. Efstathios, and X. Zhang, “Impact damage and CAI strength of a woven CFRP material with fire retardant properties,” Compos. Part B: Eng. 91, 8–17 (2016).CrossRef
27.
go back to reference M. Kuwata, “Mechanisms of interlaminar fracture toughness using non-woven veils as interleaf materials,” School of Engineering and Materials Science. Queen Mary, University of London (2010). M. Kuwata, “Mechanisms of interlaminar fracture toughness using non-woven veils as interleaf materials,” School of Engineering and Materials Science. Queen Mary, University of London (2010).
28.
go back to reference Y. Tang, L. Ye, Z. Zhang, and K. Friedrich, “Interlaminar fracture toughness and CAI strength of fiber-reinforced composites with nanoparticles. A review,” Compos. Sci. Technol. 86, 26–37 (2013).CrossRef Y. Tang, L. Ye, Z. Zhang, and K. Friedrich, “Interlaminar fracture toughness and CAI strength of fiber-reinforced composites with nanoparticles. A review,” Compos. Sci. Technol. 86, 26–37 (2013).CrossRef
Metadata
Title
A Comparative Assessment of the Influence of Modification with Thermoplastic Powders on the Residual Compressive Strength of the Carbon Fiber Reinforced Polymers
Authors
E. Sh. Imametdinov
S. V. Kondrashov
I. N. Gulyaev
I. V. Terekhov
Publication date
01-03-2023
Publisher
Pleiades Publishing
Published in
Polymer Science, Series D / Issue 1/2023
Print ISSN: 1995-4212
Electronic ISSN: 1995-4220
DOI
https://doi.org/10.1134/S1995421223010100

Other articles of this Issue 1/2023

Polymer Science, Series D 1/2023 Go to the issue

Premium Partners