Skip to main content
Top

2017 | OriginalPaper | Chapter

12. Polymer Nanocomposites Dielectrics for Energy Applications

Authors : Yang Shen, Xin Zhang, Yuanhua Lin, Ce-Wen Nan

Published in: Polymer-Engineered Nanostructures for Advanced Energy Applications

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

Dielectric capacitors have been the major enabler for many applications in advanced electronic and electrical power systems due to their capability of ultrafast charging–discharging and ultrahigh power density. The low energy density of polymer dielectrics used in these capacitors could not meet the ever increasing demands for compact, reliable, and efficient electrical power systems. Polymer nanocomposites, in which high dielectric constant (k) nanofillers are incorporated in polymer matrix, have been actively pursued. In this chapter, we begin with two theoretical considerations for concomitantly increasing the dielectric permittivity and breakdown strength of nanocomposites, i.e., the critical interfacial polarization and distribution of local electric field. In the framework of these considerations, recent progresses based on two approaches, e.g., core–shell structured polymer nanocomposites and dielectric anisotropy, toward polymer nanocomposites of high energy density are reviewed. Novel composite design paradigm, such as nanocomposites with hierarchical interfaces and topological-structure modulated nanocomposites, for concomitant enhancement of dielectric permittivity and breakdown strength is also reviewed. In addition to energy density, thermal stability of nanocomposites is another critical parameter that dominates the reliability of nanocomposites at high temperatures. The advantages and promises of nanocomposite approach in raising the energy storage performance at temperatures are also considered.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
1.
go back to reference Chu B, Zhou X, Ren K et al (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313(5785):334–336CrossRef Chu B, Zhou X, Ren K et al (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313(5785):334–336CrossRef
2.
go back to reference Cao Y, Irwin PC, Younsi K (2004) The future of nanodielectrics in the electrical power industry. IEEE Trans Dielectr Electr Insul 11(5):797–807CrossRef Cao Y, Irwin PC, Younsi K (2004) The future of nanodielectrics in the electrical power industry. IEEE Trans Dielectr Electr Insul 11(5):797–807CrossRef
3.
go back to reference Jackson JD (1999) Classical electrodynamics. Wiley, New York Jackson JD (1999) Classical electrodynamics. Wiley, New York
4.
go back to reference Reed CW, Cichanowski SW (1994) The fundamentals of aging in HV polymer-film capacitors. IEEE Trans Dielectr Electr Insul 1(5):904–922CrossRef Reed CW, Cichanowski SW (1994) The fundamentals of aging in HV polymer-film capacitors. IEEE Trans Dielectr Electr Insul 1(5):904–922CrossRef
5.
go back to reference Rabuffi M, Picci G (2002) Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans Plasma Sci 30(5):1939–1942CrossRef Rabuffi M, Picci G (2002) Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE Trans Plasma Sci 30(5):1939–1942CrossRef
6.
go back to reference Dang ZM, Yuan JK, Yao SH et al (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6335–6365CrossRef Dang ZM, Yuan JK, Yao SH et al (2013) Flexible nanodielectric materials with high permittivity for power energy storage. Adv Mater 25:6335–6365CrossRef
7.
go back to reference Li JY (2003) Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction. Phys Rev Lett 90:2176–2201 Li JY (2003) Exchange coupling in P(VDF-TrFE) copolymer based all-organic composites with giant electrostriction. Phys Rev Lett 90:2176–2201
8.
go back to reference Lewis TJ (2005) Interfaces nanometric dielectrics. J Phys D Appl Phys 38:202–212CrossRef Lewis TJ (2005) Interfaces nanometric dielectrics. J Phys D Appl Phys 38:202–212CrossRef
9.
go back to reference Hanemann T, Vinga Szabo D (2010) Polymer-nanoparticle composites from synthesis to modern applications. Materials 3:3468–3517CrossRef Hanemann T, Vinga Szabo D (2010) Polymer-nanoparticle composites from synthesis to modern applications. Materials 3:3468–3517CrossRef
10.
go back to reference Tanaka T, Kozako M, Fuse N et al (2005) Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 12:669–681CrossRef Tanaka T, Kozako M, Fuse N et al (2005) Proposal of a multi-core model for polymer nanocomposite dielectrics. IEEE Trans Dielectr Electr Insul 12:669–681CrossRef
11.
go back to reference Lewis TJ (2004) Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans Dielectr Electr Insul 11:739–753CrossRef Lewis TJ (2004) Interfaces are the dominant feature of dielectrics at the nanometric level. IEEE Trans Dielectr Electr Insul 11:739–753CrossRef
12.
go back to reference O’Konski CT (1960) Electrical properties of macromolecules V theory of ionic polarisation in polyelectrolytes. J Phys Chem 64:605–619CrossRef O’Konski CT (1960) Electrical properties of macromolecules V theory of ionic polarisation in polyelectrolytes. J Phys Chem 64:605–619CrossRef
13.
go back to reference Chew CW, Sen PN (1982) Dielectric enhancement due to electrochemical double layer: thin double layer approximation. J Chem Phys 77:4683–4693CrossRef Chew CW, Sen PN (1982) Dielectric enhancement due to electrochemical double layer: thin double layer approximation. J Chem Phys 77:4683–4693CrossRef
14.
go back to reference Lopez-Pamies O, Goudarzi T, Meddeb AB et al (2014) Extreme enhancement and reduction of the dielectric response of polymer nanoparticulate composites via interphasial charges. Appl Phys Lett 104:2429–2504CrossRef Lopez-Pamies O, Goudarzi T, Meddeb AB et al (2014) Extreme enhancement and reduction of the dielectric response of polymer nanoparticulate composites via interphasial charges. Appl Phys Lett 104:2429–2504CrossRef
15.
go back to reference Li JY, Ducharme S (2007) Electric energy density of dielectric nanocomposites. Appl Phys Lett 90:1329–1401 Li JY, Ducharme S (2007) Electric energy density of dielectric nanocomposites. Appl Phys Lett 90:1329–1401
16.
go back to reference Rao Y, Wong CP (2004) Material characterization of a high-dielectric-constant polymer-ceramic composite for embedded capacitor for RF applications. J Appl Polym Sci 92:2228–2231CrossRef Rao Y, Wong CP (2004) Material characterization of a high-dielectric-constant polymer-ceramic composite for embedded capacitor for RF applications. J Appl Polym Sci 92:2228–2231CrossRef
17.
go back to reference Kim P, Jones SC, Hotchkiss PJ et al (2007) Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv Mater 19:1001–1005CrossRef Kim P, Jones SC, Hotchkiss PJ et al (2007) Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv Mater 19:1001–1005CrossRef
18.
go back to reference Kim P, Doss M, Tillotson JP et al (2009) High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3:2581–2592CrossRef Kim P, Doss M, Tillotson JP et al (2009) High energy density nanocomposites based on surface-modified BaTiO3 and a ferroelectric polymer. ACS Nano 3:2581–2592CrossRef
19.
go back to reference Zhou T, Zha JW, Cui RY et al (2011) Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl Mater Interfaces 3:2184–2188CrossRef Zhou T, Zha JW, Cui RY et al (2011) Improving dielectric properties of BaTiO3/ferroelectric polymer composites by employing surface hydroxylated BaTiO3 nanoparticles. ACS Appl Mater Interfaces 3:2184–2188CrossRef
20.
go back to reference Liu SH, Zhai JW, Wang JW et al (2014) Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers. ACS Appl Mater Interfaces 6:1533–1540CrossRef Liu SH, Zhai JW, Wang JW et al (2014) Enhanced energy storage density in poly(vinylidene fluoride) nanocomposites by a small loading of suface-hydroxylated Ba0.6Sr0.4TiO3 nanofibers. ACS Appl Mater Interfaces 6:1533–1540CrossRef
21.
go back to reference Lee HS, Dellatore SM, Miller WM et al (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430CrossRef Lee HS, Dellatore SM, Miller WM et al (2007) Mussel-inspired surface chemistry for multifunctional coatings. Science 318:426–430CrossRef
22.
go back to reference Song Y, Shen Y, Liu HY et al (2012) Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J Mater Chem 22:16491–16498CrossRef Song Y, Shen Y, Liu HY et al (2012) Improving the dielectric constants and breakdown strength of polymer composites: effects of the shape of the BaTiO3 nanoinclusions, surface modification and polymer matrix. J Mater Chem 22:16491–16498CrossRef
23.
go back to reference Song Y, Shen Y, Liu H et al (2011) Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites. J Mater Chem 22:8063–8068CrossRef Song Y, Shen Y, Liu H et al (2011) Enhanced dielectric and ferroelectric properties induced by dopamine-modified BaTiO3 nanofibers in flexible poly(vinylidene fluoride-trifluoroethylene) nanocomposites. J Mater Chem 22:8063–8068CrossRef
24.
go back to reference Xie L, Huang XY, Wu C et al (2011) Core–shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer. J Mater Chem 21:5897–5906CrossRef Xie L, Huang XY, Wu C et al (2011) Core–shell structured poly(methyl methacrylate)/BaTiO3 nanocomposites prepared by in situ atom transfer radical polymerization: a route to high dielectric constant materials with the inherent low loss of the base polymer. J Mater Chem 21:5897–5906CrossRef
25.
go back to reference Yang K, Huang XY, Huang YH et al (2013) Fluoro-polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chem Mater 25:2327–2338CrossRef Yang K, Huang XY, Huang YH et al (2013) Fluoro-polymer@BaTiO3 hybrid nanoparticles prepared via RAFT polymerization: toward ferroelectric polymer nanocomposites with high dielectric constant and low dielectric loss for energy storage application. Chem Mater 25:2327–2338CrossRef
26.
go back to reference Li JJ, Khanchaitit P, Han K et al (2010) New route toward high-energy-density nanocomposites based on chain-end functionalized ferroelectric polymers. Chem Mater 22:5350–5357CrossRef Li JJ, Khanchaitit P, Han K et al (2010) New route toward high-energy-density nanocomposites based on chain-end functionalized ferroelectric polymers. Chem Mater 22:5350–5357CrossRef
27.
go back to reference Jung HM, Kang JH, Yang SY et al (2010) Barium titanate nanoparticles with diblock copolymer shielding layers for high-energy density nanocomposites. Chem Mater 22:450–456CrossRef Jung HM, Kang JH, Yang SY et al (2010) Barium titanate nanoparticles with diblock copolymer shielding layers for high-energy density nanocomposites. Chem Mater 22:450–456CrossRef
28.
go back to reference Siddabattuni S, Schuman TP, Dogan F (2013) Dielectric properties of polymer–particle nanocomposites influenced by electronic nature of filler surfaces. ACS Appl Mater Interfaces 5:1917–1927CrossRef Siddabattuni S, Schuman TP, Dogan F (2013) Dielectric properties of polymer–particle nanocomposites influenced by electronic nature of filler surfaces. ACS Appl Mater Interfaces 5:1917–1927CrossRef
29.
go back to reference Li Z, Fredin LA, Tewari P et al (2010) In-situ catalytic encapsulation of core–shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites. Chem Mater 22:5154–5164CrossRef Li Z, Fredin LA, Tewari P et al (2010) In-situ catalytic encapsulation of core–shell nanoparticles having variable shell thickness: dielectric and energy storage properties of high-permittivity metal oxide nanocomposites. Chem Mater 22:5154–5164CrossRef
30.
go back to reference Guo N, DiBenedetto SA, Tewari P et al (2010) Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide-polyolefin nanocomposites: experiment and theory. Chem Mater 22:1567–1578CrossRef Guo N, DiBenedetto SA, Tewari P et al (2010) Nanoparticle, size, shape, and interfacial effects on leakage current density, permittivity, and breakdown strength of metal oxide-polyolefin nanocomposites: experiment and theory. Chem Mater 22:1567–1578CrossRef
31.
go back to reference Fredin LA, Li Z, Ratner MA et al (2013) Substantial recoverable energy storage in percolative metallic aluminum-polypropylene nanocomposites. Adv Funct Mater 23:2650–2669CrossRef Fredin LA, Li Z, Ratner MA et al (2013) Substantial recoverable energy storage in percolative metallic aluminum-polypropylene nanocomposites. Adv Funct Mater 23:2650–2669CrossRef
32.
go back to reference Fredin LA, Li Z, Ratner MA et al (2012) Enhanced energy storage and suppressed dielectric loss in oxide core–shell–polyolefin nanocomposites by moderating internal surface area and increasing shell thickness. Adv Mater 24:5946–5953CrossRef Fredin LA, Li Z, Ratner MA et al (2012) Enhanced energy storage and suppressed dielectric loss in oxide core–shell–polyolefin nanocomposites by moderating internal surface area and increasing shell thickness. Adv Mater 24:5946–5953CrossRef
33.
go back to reference Li JJ, Seok SI, Chu BJ et al (2009) Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Adv Mater 21:217–221CrossRef Li JJ, Seok SI, Chu BJ et al (2009) Nanocomposites of ferroelectric polymers with TiO2 nanoparticles exhibiting significantly enhanced electrical energy density. Adv Mater 21:217–221CrossRef
34.
go back to reference Tomer V, Randall CA, Polizos G et al (2008) High- and low-field dielectric characteristics of dielectrophoretically aligned ceramic/polymer nanocomposites. J Appl Phys 103:34–115CrossRef Tomer V, Randall CA, Polizos G et al (2008) High- and low-field dielectric characteristics of dielectrophoretically aligned ceramic/polymer nanocomposites. J Appl Phys 103:34–115CrossRef
35.
go back to reference Nan C-W (1993) Physics of inhomogeneous inorganic materials. Prog Mater Sci 37:1–116CrossRef Nan C-W (1993) Physics of inhomogeneous inorganic materials. Prog Mater Sci 37:1–116CrossRef
36.
go back to reference Tang HX, Lin YR, Sodano HA (2012) Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv Energy Mater 2:469–476CrossRef Tang HX, Lin YR, Sodano HA (2012) Enhanced energy storage in nanocomposite capacitors through aligned PZT nanowires by uniaxial strain assembly. Adv Energy Mater 2:469–476CrossRef
37.
go back to reference Wang YU, Tan DQ (2011) Computational study of filler microstructure and effective property relations in dielectric composites. J Appl Phys 110:1041–1102 Wang YU, Tan DQ (2011) Computational study of filler microstructure and effective property relations in dielectric composites. J Appl Phys 110:1041–1102
38.
go back to reference Wang YU, Tan DQ, Krahn J (2011) Computational study of dielectric composites with core–shell filler particles. J Appl Phys 110:1044–1103 Wang YU, Tan DQ, Krahn J (2011) Computational study of dielectric composites with core–shell filler particles. J Appl Phys 110:1044–1103
39.
go back to reference Tomer V, Randall CA (2008) High field dielectric properties of anisotropic polymer-ceramic composites. J Appl Phys 104:1074–1106CrossRef Tomer V, Randall CA (2008) High field dielectric properties of anisotropic polymer-ceramic composites. J Appl Phys 104:1074–1106CrossRef
40.
go back to reference Song Y, Shen Y, Hu PH et al (2012) Significant enhancement in energy density of polymer composites induced by dopamine-modified Ba0.6Sr0.4TiO3 nanofibers. Appl Phys Lett 101:1529–1604 Song Y, Shen Y, Hu PH et al (2012) Significant enhancement in energy density of polymer composites induced by dopamine-modified Ba0.6Sr0.4TiO3 nanofibers. Appl Phys Lett 101:1529–1604
41.
go back to reference Hu PH, Song Y, Liu HY et al (2013) Largely enhanced energy density inflexible P(VDF-TrFE) nanocomposites by surface-modified electrospun BaSrTiO3 fibers. J Mater Chem A 1:1688–1693CrossRef Hu PH, Song Y, Liu HY et al (2013) Largely enhanced energy density inflexible P(VDF-TrFE) nanocomposites by surface-modified electrospun BaSrTiO3 fibers. J Mater Chem A 1:1688–1693CrossRef
42.
go back to reference Tomer V, Polizos G, Randall CA et al (2011) Polyethylene nanocomposite dielectrics: Implications of nanofiller orientation on high field properties and energy storage. J Appl Phys 109:1074–1113CrossRef Tomer V, Polizos G, Randall CA et al (2011) Polyethylene nanocomposite dielectrics: Implications of nanofiller orientation on high field properties and energy storage. J Appl Phys 109:1074–1113CrossRef
43.
go back to reference Fillery SP, Koerner H, Drummy L et al (2012) Nanolaminates: increasing dielectric breakdown strength of composites. ACS Appl Mater Interfaces 4:1388–1396CrossRef Fillery SP, Koerner H, Drummy L et al (2012) Nanolaminates: increasing dielectric breakdown strength of composites. ACS Appl Mater Interfaces 4:1388–1396CrossRef
44.
go back to reference Li WJ, Meng QJ, Zheng YS et al (2010) Electric energy storage properties of poly(vinylidene fluoride). Appl Phys Lett 96:192905CrossRef Li WJ, Meng QJ, Zheng YS et al (2010) Electric energy storage properties of poly(vinylidene fluoride). Appl Phys Lett 96:192905CrossRef
45.
go back to reference Tang HX, Sodano HA (2013) Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett 13:1373–1379CrossRef Tang HX, Sodano HA (2013) Ultra high energy density nanocomposite capacitors with fast discharge using Ba0.2Sr0.8TiO3 nanowires. Nano Lett 13:1373–1379CrossRef
46.
go back to reference Tomer V, Manias E, Randall CA et al (2011) High field properties and energy storage in nanocomposite dielectrics of poly(vinylidene fluoride-hexafluoropropylene). J Appl Phys 110:1044–1107CrossRef Tomer V, Manias E, Randall CA et al (2011) High field properties and energy storage in nanocomposite dielectrics of poly(vinylidene fluoride-hexafluoropropylene). J Appl Phys 110:1044–1107CrossRef
47.
go back to reference Polizos G, Tomer V, Manias E et al (2010) Epoxy-based nanocomposites for electrical energy storage II: nanocomposites with nanofillers of reactive montmorillonite covalently-bonded with barium titanate. J Appl Phys 108:1074–1117CrossRef Polizos G, Tomer V, Manias E et al (2010) Epoxy-based nanocomposites for electrical energy storage II: nanocomposites with nanofillers of reactive montmorillonite covalently-bonded with barium titanate. J Appl Phys 108:1074–1117CrossRef
48.
go back to reference Li Q, Han K, Gadinski MR et al (2014) High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater 26(36):6244–6249CrossRef Li Q, Han K, Gadinski MR et al (2014) High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv Mater 26(36):6244–6249CrossRef
49.
go back to reference Hu PH, Shen Y, Guan YH et al (2014) Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density. Adv Funct Mater 24:3172–3178CrossRef Hu PH, Shen Y, Guan YH et al (2014) Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density. Adv Funct Mater 24:3172–3178CrossRef
50.
go back to reference Zhang X, Shen Y, Xu B et al (2016) Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv Mater 28:2055–2062CrossRef Zhang X, Shen Y, Xu B et al (2016) Giant energy density and improved discharge efficiency of solution-processed polymer nanocomposites for dielectric energy storage. Adv Mater 28:2055–2062CrossRef
51.
go back to reference Zhang X, Shen Y, Zhang QH et al (2015) Ultrahigh energy density of polymer nanocomposites containing TiO2@BaTiO3 nanofibers by atomic scale interface-engineering. Adv Mater 27:819–825CrossRef Zhang X, Shen Y, Zhang QH et al (2015) Ultrahigh energy density of polymer nanocomposites containing TiO2@BaTiO3 nanofibers by atomic scale interface-engineering. Adv Mater 27:819–825CrossRef
52.
go back to reference Zhang X, Chen W, Wang J, Shen Y, Gu L, Lin Y, Nan C-W (2014) Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO @BaTiO nanofibers. Nanoscale 6(12):6701–6709 Zhang X, Chen W, Wang J, Shen Y, Gu L, Lin Y, Nan C-W (2014) Hierarchical interfaces induce high dielectric permittivity in nanocomposites containing TiO @BaTiO nanofibers. Nanoscale 6(12):6701–6709
53.
go back to reference Li Q, Chen L, Gadinski MR, Zhang S, Zhang G, Li H, Haque A, Chen L-Q, Jackson T, Wang Q (2015) Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562):576–579 Li Q, Chen L, Gadinski MR, Zhang S, Zhang G, Li H, Haque A, Chen L-Q, Jackson T, Wang Q (2015) Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523(7562):576–579
54.
go back to reference Li Q, Zhang G, Liu F, Han K, Gadinski MR, Xiong C, Wang Q (2015) Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energ Environ Sci 8(3):922–931 Li Q, Zhang G, Liu F, Han K, Gadinski MR, Xiong C, Wang Q (2015) Solution-processed ferroelectric terpolymer nanocomposites with high breakdown strength and energy density utilizing boron nitride nanosheets. Energ Environ Sci 8(3):922–931
Metadata
Title
Polymer Nanocomposites Dielectrics for Energy Applications
Authors
Yang Shen
Xin Zhang
Yuanhua Lin
Ce-Wen Nan
Copyright Year
2017
DOI
https://doi.org/10.1007/978-3-319-57003-7_12

Premium Partners