Skip to main content
Top

2018 | OriginalPaper | Chapter

Porous Metals in Orthopedics

Authors : Karel Lietaert, Ruben Wauthle, Jan Schrooten

Published in: Biomaterials in Clinical Practice

Publisher: Springer International Publishing

Activate our intelligent search to find suitable subject content or patents.

search-config
loading …

Abstract

This chapter aims to bring the reader some knowledge about porous metals and their use in orthopedics in particular. The first section highlights the importance of porous metals. This section is followed by an overview of the different production processes used today. These are divided in two groups: additive and non-additive manufacturing processes. From the first group, selective laser melting and electron beam melting are treated in detail. From the second group, the production processes for Tritanium® and Trabecular Metal™ are explained. The third section gives an overview of the equations which govern the mechanical properties of porous metals. The importance and possibilities of finite element modelling are also considered in this chapter. Hereafter the standards available for testing of porous metals in medicine are described. In the fifth section the most important materials for (porous) orthopedic implants are reviewed. Although biodegradable porous metals are shortly touched in this section, the emphasis is on the bio-inert materials as these comprise the majority of porous implants used today. The sixth section concludes this chapter and points out some practical aspects which need to be considered in the design and production of a porous orthopedic implant.

Dont have a licence yet? Then find out more about our products and how to get one now:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literature
go back to reference Ahmadi SM, Campoli G, Amin Yavari S et al (2014) Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J Mech Behav Biomed Mater 34C:106–115CrossRef Ahmadi SM, Campoli G, Amin Yavari S et al (2014) Mechanical behavior of regular open-cell porous biomaterials made of diamond lattice unit cells. J Mech Behav Biomed Mater 34C:106–115CrossRef
go back to reference Almeida CR, Serra T, Oliveira MI et al (2014) Impact of 3-D printed PLA-and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater 10:613–622CrossRef Almeida CR, Serra T, Oliveira MI et al (2014) Impact of 3-D printed PLA-and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation. Acta Biomater 10:613–622CrossRef
go back to reference Alvarez K, Sato K, Hyun SK et al (2008) Fabrication and properties of Lotus-type porous nickel-free stainless steel for biomedical applications. Mater Sci Eng, C 28:44–50CrossRef Alvarez K, Sato K, Hyun SK et al (2008) Fabrication and properties of Lotus-type porous nickel-free stainless steel for biomedical applications. Mater Sci Eng, C 28:44–50CrossRef
go back to reference Alvarez K, Nakajima H (2009) Metallic scaffolds for bone regeneration. Mater 2:790–832CrossRef Alvarez K, Nakajima H (2009) Metallic scaffolds for bone regeneration. Mater 2:790–832CrossRef
go back to reference Ambrose CG, Hartline BE, Clanton TO et al (2015) Polymers in orthopaedic surgery. In: Puoci F (ed) Advanced polymers in medicine, 1st edn. Springer International Publishing Switzerland, Cham, pp p129–p145 Ambrose CG, Hartline BE, Clanton TO et al (2015) Polymers in orthopaedic surgery. In: Puoci F (ed) Advanced polymers in medicine, 1st edn. Springer International Publishing Switzerland, Cham, pp p129–p145
go back to reference ASTM (2011) F1295-11: Standard specification for wrought titanium-6aluminium-7niobium alloy for surgical implant applications ASTM (2011) F1295-11: Standard specification for wrought titanium-6aluminium-7niobium alloy for surgical implant applications
go back to reference ASTM (2012) F2792-12a: standard practice for reporting data for test specimens prepared by additive manufacturing ASTM (2012) F2792-12a: standard practice for reporting data for test specimens prepared by additive manufacturing
go back to reference ASTM (2013) F136-13: standard specification for wrought titanium-6aluminium-4vanadium eli (extra low interstitial) alloy for surgical implant applications ASTM (2013) F136-13: standard specification for wrought titanium-6aluminium-4vanadium eli (extra low interstitial) alloy for surgical implant applications
go back to reference ASTM (2013) F1713: standard specification for wrought titanium-13niobium-13zirconium alloy for surgical implant applications ASTM (2013) F1713: standard specification for wrought titanium-13niobium-13zirconium alloy for surgical implant applications
go back to reference ASTM (2013) F1813-13: standard specification for wrought titanium-12molybdenum-6zirconium-2iron alloy for surgical implant ASTM (2013) F1813-13: standard specification for wrought titanium-12molybdenum-6zirconium-2iron alloy for surgical implant
go back to reference ASTM (2013) F3001-13: standard specification for additive manufacturing titanium-6aluminium-4vanadium eli (extra low interstitial) with powder bed fusion ASTM (2013) F3001-13: standard specification for additive manufacturing titanium-6aluminium-4vanadium eli (extra low interstitial) with powder bed fusion
go back to reference ASTM (2013) F67-13: standard specification for unalloyed titanium, for surgical implant applications ASTM (2013) F67-13: standard specification for unalloyed titanium, for surgical implant applications
go back to reference ASTM (2014) F2924: standard specification for additive manufacturing titanium-6 aluminum-4 vanadium with powder bed fusion ASTM (2014) F2924: standard specification for additive manufacturing titanium-6 aluminum-4 vanadium with powder bed fusion
go back to reference Babis GC, Mavrogenis AF (2013) Cobalt-chrome porous-coated implant-bone interface in total joint arthroplasty. In: Karachalios T (ed) Bone-implant interface in orthopedic surgery, 1st edn. Springer, London, pp p55–p65 Babis GC, Mavrogenis AF (2013) Cobalt-chrome porous-coated implant-bone interface in total joint arthroplasty. In: Karachalios T (ed) Bone-implant interface in orthopedic surgery, 1st edn. Springer, London, pp p55–p65
go back to reference Bansiddhi A, Sargeant TD, Stupp SI et al (2008) Porous NiTi for bone implants: a review. Acta Biomater 4:773–782CrossRef Bansiddhi A, Sargeant TD, Stupp SI et al (2008) Porous NiTi for bone implants: a review. Acta Biomater 4:773–782CrossRef
go back to reference Bidan CM, Kommareddy KP, Rumpler M et al (2012) How linear tension converts to curvature: geometric control of bone tissue growth. PLoS One 7 Bidan CM, Kommareddy KP, Rumpler M et al (2012) How linear tension converts to curvature: geometric control of bone tissue growth. PLoS One 7
go back to reference Bidan CM, Kommareddy KP, Rumpler M et al (2013a) Geometry as a factor for tissue growth: towards shape optimization of tissue engineering scaffolds. Adv Healthc Mater 2:186–194CrossRef Bidan CM, Kommareddy KP, Rumpler M et al (2013a) Geometry as a factor for tissue growth: towards shape optimization of tissue engineering scaffolds. Adv Healthc Mater 2:186–194CrossRef
go back to reference Bidan CM, Wang GM, Dunlop JW (2013b) A three-dimensional model for tissue deposition on complex surfaces. Comput Method Biomechanic Biomed Eng 16:1056–1070CrossRef Bidan CM, Wang GM, Dunlop JW (2013b) A three-dimensional model for tissue deposition on complex surfaces. Comput Method Biomechanic Biomed Eng 16:1056–1070CrossRef
go back to reference Boccaccio A, Ballini A, Pappalettere D et al (2011) Finite element method (FEM), mechanobiology, and biomimetic scaffolds in bone tissue engineering. Int J Biol Sci 26:112–132CrossRef Boccaccio A, Ballini A, Pappalettere D et al (2011) Finite element method (FEM), mechanobiology, and biomimetic scaffolds in bone tissue engineering. Int J Biol Sci 26:112–132CrossRef
go back to reference Bozic KJ, Kurtz SM, Lau E et al (2009) The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg Am 91:128–133CrossRef Bozic KJ, Kurtz SM, Lau E et al (2009) The epidemiology of revision total hip arthroplasty in the United States. J Bone Joint Surg Am 91:128–133CrossRef
go back to reference Brubaker SM, Brown TE, Manaswi A et al (2007) Treatment options and allograft use in revision total hip arthroplasty: the acetabulum. J Arthrop 22:52–56CrossRef Brubaker SM, Brown TE, Manaswi A et al (2007) Treatment options and allograft use in revision total hip arthroplasty: the acetabulum. J Arthrop 22:52–56CrossRef
go back to reference Campoli G, Borleffs MS, Amin Yavari S et al (2013) Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Mater Des 49:957–965CrossRef Campoli G, Borleffs MS, Amin Yavari S et al (2013) Mechanical properties of open-cell metallic biomaterials manufactured using additive manufacturing. Mater Des 49:957–965CrossRef
go back to reference Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng, R 87:1–57CrossRef Chen Q, Thouas GA (2015) Metallic implant biomaterials. Mater Sci Eng, R 87:1–57CrossRef
go back to reference Davis & Associates (2003) Metallic materials. In: Davis JR (ed) Handbook of materials for medical devices, 1st edn. ASM International, Materials Park OH, pp 21–50 Davis & Associates (2003) Metallic materials. In: Davis JR (ed) Handbook of materials for medical devices, 1st edn. ASM International, Materials Park OH, pp 21–50
go back to reference Ding Y, Wen C, Hodgson P et al (2014) Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. J Mater Chem B 2:1912–1933CrossRef Ding Y, Wen C, Hodgson P et al (2014) Effects of alloying elements on the corrosion behavior and biocompatibility of biodegradable magnesium alloys: a review. J Mater Chem B 2:1912–1933CrossRef
go back to reference Doppalapudi S, Jain A, Khan W et al (2014) Biodegradable polymers—an overview. Polym Advan Technol 25:427–435CrossRef Doppalapudi S, Jain A, Khan W et al (2014) Biodegradable polymers—an overview. Polym Advan Technol 25:427–435CrossRef
go back to reference Dunbar MJ, Wilson DAJ, Hennigar AW et al (2001) J Bone Joint Surg Am 91:1578–1586CrossRef Dunbar MJ, Wilson DAJ, Hennigar AW et al (2001) J Bone Joint Surg Am 91:1578–1586CrossRef
go back to reference Eglin D, Alini M (2008) Degradable polymeric materials for osteosynthesis: tutorial. Eur Cell Mater 16:81–90 Eglin D, Alini M (2008) Degradable polymeric materials for osteosynthesis: tutorial. Eur Cell Mater 16:81–90
go back to reference Feng Q, Zhang D, Xin C et al (2013) Characterization and in vivo evaluation of a bio-corrodible nitride iron stent. J Mater Sci—Mater Med 24:713–724CrossRef Feng Q, Zhang D, Xin C et al (2013) Characterization and in vivo evaluation of a bio-corrodible nitride iron stent. J Mater Sci—Mater Med 24:713–724CrossRef
go back to reference Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perf 23:1917–1928CrossRef Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perf 23:1917–1928CrossRef
go back to reference Frigg A, Dougall H, Boyd S et al (2010) Can porous tantalum be used to achieve ankle and subtalar arthrodesis? A pilot study. Clin Orthop Relat R 468:209–216CrossRef Frigg A, Dougall H, Boyd S et al (2010) Can porous tantalum be used to achieve ankle and subtalar arthrodesis? A pilot study. Clin Orthop Relat R 468:209–216CrossRef
go back to reference Fuerst J, Medlin D, Carter M et al (2015) LASER additive manufacturing of titanium-tantalum alloy structured interfaces for modular orthopedic devices. JOM 64:775–780CrossRef Fuerst J, Medlin D, Carter M et al (2015) LASER additive manufacturing of titanium-tantalum alloy structured interfaces for modular orthopedic devices. JOM 64:775–780CrossRef
go back to reference ISO (2011) 13314: Mechanical testing of metals—ductility testing—compression test for porous and cellular metals ISO (2011) 13314: Mechanical testing of metals—ductility testing—compression test for porous and cellular metals
go back to reference Gamsjager E, Bidan C, Fischer F et al (2013) Modelling the role of surface stress on the kinetics of tissue growth in confined geometries. Acta Biomater 9:5531–5543CrossRef Gamsjager E, Bidan C, Fischer F et al (2013) Modelling the role of surface stress on the kinetics of tissue growth in confined geometries. Acta Biomater 9:5531–5543CrossRef
go back to reference Geetha M, Singh AJ, Asokamani R et al (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425CrossRef Geetha M, Singh AJ, Asokamani R et al (2009) Ti based biomaterials, the ultimate choice for orthopaedic implants—a review. Prog Mater Sci 54:397–425CrossRef
go back to reference Giannitelli SM, Accoto D, Trombetta M et al (2014) Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater 10:580–594CrossRef Giannitelli SM, Accoto D, Trombetta M et al (2014) Current trends in the design of scaffolds for computer-aided tissue engineering. Acta Biomater 10:580–594CrossRef
go back to reference Gibson LJ, Ashby MF (1999) Cellular solids—structure and properties. Cambridge University Press, CambridgeMATH Gibson LJ, Ashby MF (1999) Cellular solids—structure and properties. Cambridge University Press, CambridgeMATH
go back to reference Gieseke M, Noelke C, Kaierle S et al (2013) Selective laser melting of magnesium and magnesium alloys. Paper presented at the magnesium technology conference, San Antonio TX, 3–7 March 2013 Gieseke M, Noelke C, Kaierle S et al (2013) Selective laser melting of magnesium and magnesium alloys. Paper presented at the magnesium technology conference, San Antonio TX, 3–7 March 2013
go back to reference Gong H, Wang K, Strich R et al (2015) In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy. J Biomed Mater Res B 103:1632–1640CrossRef Gong H, Wang K, Strich R et al (2015) In vitro biodegradation behavior, mechanical properties, and cytotoxicity of biodegradable Zn-Mg alloy. J Biomed Mater Res B 103:1632–1640CrossRef
go back to reference Goodall R, Mortensen A (2014) Porous Metals. In: Laughlin D, Hono K (eds) Physical metallurgy, 5th edn. Elsevier, Amsterdam, pp p2399–p2596CrossRef Goodall R, Mortensen A (2014) Porous Metals. In: Laughlin D, Hono K (eds) Physical metallurgy, 5th edn. Elsevier, Amsterdam, pp p2399–p2596CrossRef
go back to reference Haude M, Erbel R, Erne P et al (2013) Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 months results of the prospective, multicenter, first-in-man BIOSOLVE-I trial. Lancet 381:836–844CrossRef Haude M, Erbel R, Erne P et al (2013) Safety and performance of the drug-eluting absorbable metal scaffold (DREAMS) in patients with de-novo coronary lesions: 12 months results of the prospective, multicenter, first-in-man BIOSOLVE-I trial. Lancet 381:836–844CrossRef
go back to reference Hazlehurst KB, Wang CJ, Stanford M (2013a) The potential of a cobalt chrome molybdenum femoral stem with functionally graded orthotropic structures manufactured using Laser Melting technologies. Med Hypotheses 81:1096–1099CrossRef Hazlehurst KB, Wang CJ, Stanford M (2013a) The potential of a cobalt chrome molybdenum femoral stem with functionally graded orthotropic structures manufactured using Laser Melting technologies. Med Hypotheses 81:1096–1099CrossRef
go back to reference Hazlehurst KB, Wang CJ, Stanford M (2013b) Evaluation of the stiffness characteristics of square pore CoCrMo cellular structures manufactured using laser melting technology for potential orthopedic applications. Mater Des 51:949–955CrossRef Hazlehurst KB, Wang CJ, Stanford M (2013b) Evaluation of the stiffness characteristics of square pore CoCrMo cellular structures manufactured using laser melting technology for potential orthopedic applications. Mater Des 51:949–955CrossRef
go back to reference Hazlehurst KB, Wang CJ, Standford M (2014) An investigation into the flexural characteristics of functionally graded cobalt chrome femoral stems manufactured using selective laser melting. Mater Des 60:177–183CrossRef Hazlehurst KB, Wang CJ, Standford M (2014) An investigation into the flexural characteristics of functionally graded cobalt chrome femoral stems manufactured using selective laser melting. Mater Des 60:177–183CrossRef
go back to reference Helsen JA, Missirlis Y (2010) Biomaterials—a tantalus experience. Springer, Heidelberg Helsen JA, Missirlis Y (2010) Biomaterials—a tantalus experience. Springer, Heidelberg
go back to reference Hermawan H (2012) Biodegradable metals—from concept to applications. Springer, Heidelberg Hermawan H (2012) Biodegradable metals—from concept to applications. Springer, Heidelberg
go back to reference Hiemenz J (2007) Electron beam melting. Adv Mater Process March 2007:45–46 Hiemenz J (2007) Electron beam melting. Adv Mater Process March 2007:45–46
go back to reference Hornberger H, Virtanen S, Boccaccini AR (2012) Biomedical coatings on magnesium alloys—a review. Acta Biomater 8:2442–2455CrossRef Hornberger H, Virtanen S, Boccaccini AR (2012) Biomedical coatings on magnesium alloys—a review. Acta Biomater 8:2442–2455CrossRef
go back to reference Issack PS (2013) Use of porous tantalum for acetabular reconstruction in revision hip arthroplasty. J Bone Joint Surg Am 95:1981–1987CrossRef Issack PS (2013) Use of porous tantalum for acetabular reconstruction in revision hip arthroplasty. J Bone Joint Surg Am 95:1981–1987CrossRef
go back to reference Jafari SM, Bender B, Coyle C et al (2010) Do tantalum and titanium cups show similar results in revision hip arthroplasty? Clin Orthop Relat R 468:459–465CrossRef Jafari SM, Bender B, Coyle C et al (2010) Do tantalum and titanium cups show similar results in revision hip arthroplasty? Clin Orthop Relat R 468:459–465CrossRef
go back to reference Jani JM, Leary M, Subic A et al (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef Jani JM, Leary M, Subic A et al (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 56:1078–1113CrossRef
go back to reference Kaplan RB (2000) Open cell tantalum structures for cancellous bone implants and cell and tissue receptors. EP 0560279 B1 Kaplan RB (2000) Open cell tantalum structures for cancellous bone implants and cell and tissue receptors. EP 0560279 B1
go back to reference Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomater 26:5474–5491CrossRef Karageorgiou V, Kaplan D (2005) Porosity of 3D biomaterial scaffolds and osteogenesis. Biomater 26:5474–5491CrossRef
go back to reference Kaur G, Pandey OP, Singh K et al (2014) A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res A 102:254–274CrossRef Kaur G, Pandey OP, Singh K et al (2014) A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res A 102:254–274CrossRef
go back to reference Kaya RA, Cavusoglu H, Tanik C et al (2007) The effects of magnesium particles in posterolateral spinal fusion: an experimental in vivo study in a sheep model. J Neurosurg Spine 6:141–149CrossRef Kaya RA, Cavusoglu H, Tanik C et al (2007) The effects of magnesium particles in posterolateral spinal fusion: an experimental in vivo study in a sheep model. J Neurosurg Spine 6:141–149CrossRef
go back to reference Kircher RS, Christensen AM, Wurth KW (2009) Electron beam melted (EBM) Co-Cr-Mo alloy for orthopaedic implant applications. Paper presented at the Solid Freeform Fabrication Symposium, University of Texas at Austin, Austin TX, 3–5 August 2009 Kircher RS, Christensen AM, Wurth KW (2009) Electron beam melted (EBM) Co-Cr-Mo alloy for orthopaedic implant applications. Paper presented at the Solid Freeform Fabrication Symposium, University of Texas at Austin, Austin TX, 3–5 August 2009
go back to reference Knychala J, Bouropoulos N, Catt C et al (2013) Pore geometry regulates early stage human bone marrow cell tissue formation and organization. Ann Biomed Eng 41:917–930CrossRef Knychala J, Bouropoulos N, Catt C et al (2013) Pore geometry regulates early stage human bone marrow cell tissue formation and organization. Ann Biomed Eng 41:917–930CrossRef
go back to reference Lacroix D, Planell JA, Prendergast PJ (2009) Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering. Philos Trans A 373:1993–2009CrossRefMATH Lacroix D, Planell JA, Prendergast PJ (2009) Computer-aided design and finite-element modelling of biomaterial scaffolds for bone tissue engineering. Philos Trans A 373:1993–2009CrossRefMATH
go back to reference Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370:1508–1519CrossRef Learmonth ID, Young C, Rorabeck C (2007) The operation of the century: total hip replacement. Lancet 370:1508–1519CrossRef
go back to reference Lefebvre LP (2013) Porous metals and metallic foams in orthopedic applications. In: Dukhan N (ed) Metal foams: fundamentals and applications, 1st edn. DEStech Publications, Lancaster, pp p317–p362 Lefebvre LP (2013) Porous metals and metallic foams in orthopedic applications. In: Dukhan N (ed) Metal foams: fundamentals and applications, 1st edn. DEStech Publications, Lancaster, pp p317–p362
go back to reference Levine B (2008) A new era in porous metals: applications in orthopaedics. Adv Eng Mater 10:788–792CrossRef Levine B (2008) A new era in porous metals: applications in orthopaedics. Adv Eng Mater 10:788–792CrossRef
go back to reference Levine BR, Fabi DW (2010) Porous metals in orthopedic applications—a review. Materialwiss Werkst 41:1002–1010CrossRef Levine BR, Fabi DW (2010) Porous metals in orthopedic applications—a review. Materialwiss Werkst 41:1002–1010CrossRef
go back to reference Li Y, Yang C, Zhao H et al (2014) New developments of Ti-based alloys for biomedical applications. Mater 7:1709–1800CrossRef Li Y, Yang C, Zhao H et al (2014) New developments of Ti-based alloys for biomedical applications. Mater 7:1709–1800CrossRef
go back to reference Lietaert K, Weber L, Van Humbeeck J et al (2013) Open cellular magnesium alloys for biodegradable orthopaedic implants. J Magnes Alloys 1:303–311CrossRef Lietaert K, Weber L, Van Humbeeck J et al (2013) Open cellular magnesium alloys for biodegradable orthopaedic implants. J Magnes Alloys 1:303–311CrossRef
go back to reference Muth J, Poggie M, Kulesha G et al (2012) Novel highly porous metal technology in artificial hip and knee replacement: processing methodologies and clinical applications. JOM 65:318–324CrossRef Muth J, Poggie M, Kulesha G et al (2012) Novel highly porous metal technology in artificial hip and knee replacement: processing methodologies and clinical applications. JOM 65:318–324CrossRef
go back to reference Ng CC, Savalani MM, Man HC et al (2010) Layer manufacturing of magnesium and its alloy structures for future applications. Virtual Phys Prototyping 5:13–19CrossRef Ng CC, Savalani MM, Man HC et al (2010) Layer manufacturing of magnesium and its alloy structures for future applications. Virtual Phys Prototyping 5:13–19CrossRef
go back to reference Ng CC, Savalani MM, Lau ML et al (2011a) Microstructure and mechanical properties of selective laser melted magnesium. Appl Surf Sci 257:7447–7454CrossRef Ng CC, Savalani MM, Lau ML et al (2011a) Microstructure and mechanical properties of selective laser melted magnesium. Appl Surf Sci 257:7447–7454CrossRef
go back to reference Ng CC, Savalani M, Man HC (2011b) Fabrication of magnesium using selective laser melting technique. Rapid Prototyping J 17:479–490CrossRef Ng CC, Savalani M, Man HC (2011b) Fabrication of magnesium using selective laser melting technique. Rapid Prototyping J 17:479–490CrossRef
go back to reference Orinakova R, Orinak A, Buckova LM et al (2013) Iron based degradable foam structures for potential orthopedic applications. Int J Electrochem Sci 8:12451–12465 Orinakova R, Orinak A, Buckova LM et al (2013) Iron based degradable foam structures for potential orthopedic applications. Int J Electrochem Sci 8:12451–12465
go back to reference Razi H, Checa S, Schaser K-D et al (2012) Shaping scaffold structures in rapid manufacturing implants: a modeling approach toward mechano-biologically optimized configurations for large bone defect. J Biomed Mater Res B 100:1736–1745CrossRef Razi H, Checa S, Schaser K-D et al (2012) Shaping scaffold structures in rapid manufacturing implants: a modeling approach toward mechano-biologically optimized configurations for large bone defect. J Biomed Mater Res B 100:1736–1745CrossRef
go back to reference Ripamonti U, Roden L (2010) Biomimetics for the induction of bone formation. Expert Rev Biomed Devices 7:469–479CrossRef Ripamonti U, Roden L (2010) Biomimetics for the induction of bone formation. Expert Rev Biomed Devices 7:469–479CrossRef
go back to reference Ripamonti U, Roden L, Renton L (2012) Osteoinductive hydroxyapatite-coated titanium implants. Biomater 33:3813–3823CrossRef Ripamonti U, Roden L, Renton L (2012) Osteoinductive hydroxyapatite-coated titanium implants. Biomater 33:3813–3823CrossRef
go back to reference Rotaru H, Schumacher R, Kim S-G et al (2015) Selective laser melted titanium implants: a new technique for the reconstruction of extensive zygomatic complex defects. Maxillofac Plast Reconstr Surg. doi:10.1186/s40902-015-0001-9 Rotaru H, Schumacher R, Kim S-G et al (2015) Selective laser melted titanium implants: a new technique for the reconstruction of extensive zygomatic complex defects. Maxillofac Plast Reconstr Surg. doi:10.​1186/​s40902-015-0001-9
go back to reference Rumpler M, Woesz A, Dunlop JW et al (2008) The effect of geometry on three-dimensional tissue growth. J R Soc Interface 5:1173–1180CrossRef Rumpler M, Woesz A, Dunlop JW et al (2008) The effect of geometry on three-dimensional tissue growth. J R Soc Interface 5:1173–1180CrossRef
go back to reference Sidambe AT (2014) Biocompatibility of advanced manufactured titanium implants—a review. Mater 7:8168–8188CrossRef Sidambe AT (2014) Biocompatibility of advanced manufactured titanium implants—a review. Mater 7:8168–8188CrossRef
go back to reference Sinclair S, Konz G, Dawson J et al (2012) Host bone response to polyetheretherketone versus porous tantalum implants for cervical fusion in a goat model. Spine 37:571–580CrossRef Sinclair S, Konz G, Dawson J et al (2012) Host bone response to polyetheretherketone versus porous tantalum implants for cervical fusion in a goat model. Spine 37:571–580CrossRef
go back to reference Smith M, Guan Z, Cantwell WJ (2013) Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int J Mech Sci 67:28–41CrossRef Smith M, Guan Z, Cantwell WJ (2013) Finite element modelling of the compressive response of lattice structures manufactured using the selective laser melting technique. Int J Mech Sci 67:28–41CrossRef
go back to reference Speirs M, Kruth J-P, Van Humbeeck J et al (2013) The effect of SLM parameters on geometrical characteristic of open porous NiTi scaffolds. Paper presented at the VRAP Advanced Research in Virtual and Rapid Prototyping conference, Leiria, 1–5 Oct 2013 Speirs M, Kruth J-P, Van Humbeeck J et al (2013) The effect of SLM parameters on geometrical characteristic of open porous NiTi scaffolds. Paper presented at the VRAP Advanced Research in Virtual and Rapid Prototyping conference, Leiria, 1–5 Oct 2013
go back to reference Song B, Dong S, Deng S et al (2014) Microstructure and tensile properties of iron parts fabricated by selective laser melting. Opt Laser Technol 56:451–460CrossRef Song B, Dong S, Deng S et al (2014) Microstructure and tensile properties of iron parts fabricated by selective laser melting. Opt Laser Technol 56:451–460CrossRef
go back to reference Stankiewicz P (2000) Method for producing controlled aspect ratio reticulated carbon foam and the resultant foam. US 6103149 A Stankiewicz P (2000) Method for producing controlled aspect ratio reticulated carbon foam and the resultant foam. US 6103149 A
go back to reference Straley KS, Foo CW, Heilshorn SC (2010) Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotraum 27:1–19CrossRef Straley KS, Foo CW, Heilshorn SC (2010) Biomaterial design strategies for the treatment of spinal cord injuries. J Neurotraum 27:1–19CrossRef
go back to reference Sumita M, Hanawa T, Teoh SW (2004) Development of nitrogen-containing nickel-free austenitic steels for metallic biomaterials—review. Mater Sci Eng, C 24:753–760CrossRef Sumita M, Hanawa T, Teoh SW (2004) Development of nitrogen-containing nickel-free austenitic steels for metallic biomaterials—review. Mater Sci Eng, C 24:753–760CrossRef
go back to reference Sundfeldt M, Carlsson LV, Johansson CB et al (2006) Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop 77:177–197CrossRef Sundfeldt M, Carlsson LV, Johansson CB et al (2006) Aseptic loosening, not only a question of wear: a review of different theories. Acta Orthop 77:177–197CrossRef
go back to reference Talha M, Behera CK, Sinha OP (2013) A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Mater Sci Eng, C 33:3563–3575CrossRef Talha M, Behera CK, Sinha OP (2013) A review on nickel-free nitrogen containing austenitic stainless steels for biomedical applications. Mater Sci Eng, C 33:3563–3575CrossRef
go back to reference Thijs L, Montero Sistiaga ML, Wauthle R et al (2013) Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum. Acta Materer 61:4657–4668CrossRef Thijs L, Montero Sistiaga ML, Wauthle R et al (2013) Strong morphological and crystallographic texture and resulting yield strength anisotropy in selective laser melted tantalum. Acta Materer 61:4657–4668CrossRef
go back to reference van Grunsven W, Hernandez-Nava E, Reilly GC et al (2014) Fabrication and mechanical characterization of titanium lattices with graded porosity. Metals 4:401–409CrossRef van Grunsven W, Hernandez-Nava E, Reilly GC et al (2014) Fabrication and mechanical characterization of titanium lattices with graded porosity. Metals 4:401–409CrossRef
go back to reference Villanueva M, Rios-Luna A, Pereiro De Lamo J et al (2008) A review of the treatment of pelvic discontinuity. HSS J 4:128–137CrossRef Villanueva M, Rios-Luna A, Pereiro De Lamo J et al (2008) A review of the treatment of pelvic discontinuity. HSS J 4:128–137CrossRef
go back to reference Wauthle R (2014) Industrialization of selective laser melting for the production of porous titanium and tantalum implants. Dissertation, KU Leuven Wauthle R (2014) Industrialization of selective laser melting for the production of porous titanium and tantalum implants. Dissertation, KU Leuven
go back to reference Wauthle R, Vrancken B, Beynaerts B et al (2015a) Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit Manuf 5:77–84CrossRef Wauthle R, Vrancken B, Beynaerts B et al (2015a) Effects of build orientation and heat treatment on the microstructure and mechanical properties of selective laser melted Ti6Al4V lattice structures. Addit Manuf 5:77–84CrossRef
go back to reference Wauthle R, van der Stok J, Amin Yavari S et al (2015b) Additively manufactured porous tantalum implants. Acta Biomater 14:217–225CrossRef Wauthle R, van der Stok J, Amin Yavari S et al (2015b) Additively manufactured porous tantalum implants. Acta Biomater 14:217–225CrossRef
go back to reference Wei K, Gao M, Wang Z et al (2014) Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy. Mater Sci Eng, A 611:212–222CrossRef Wei K, Gao M, Wang Z et al (2014) Effect of energy input on formability, microstructure and mechanical properties of selective laser melted AZ91D magnesium alloy. Mater Sci Eng, A 611:212–222CrossRef
go back to reference Wieding J, Wolf A, Bader R (2014) Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone. J Mech Behav Biomed Mater 37:56–68CrossRef Wieding J, Wolf A, Bader R (2014) Numerical optimization of open-porous bone scaffold structures to match the elastic properties of human cortical bone. J Mech Behav Biomed Mater 37:56–68CrossRef
go back to reference Windhagen H, Radtke K, Weizbauer A et al (2013) Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng OnLine 12 Windhagen H, Radtke K, Weizbauer A et al (2013) Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: short term results of the first prospective, randomized, controlled clinical pilot study. Biomed Eng OnLine 12
go back to reference Wohlers T (2013) Wohlers report 2013. Wohlers Associates, Fort Collins CO Wohlers T (2013) Wohlers report 2013. Wohlers Associates, Fort Collins CO
go back to reference Woodruff MA, Lange C, Reichert J et al (2012) Bone tissue engineering: from bench to bedside. Mater Today 15:430–435CrossRef Woodruff MA, Lange C, Reichert J et al (2012) Bone tissue engineering: from bench to bedside. Mater Today 15:430–435CrossRef
go back to reference Wuisman PI, Smit TH (2006) Bioresorbable polymers: heading for a new generation of spinal cages. Eur Spine J 15:133–148CrossRef Wuisman PI, Smit TH (2006) Bioresorbable polymers: heading for a new generation of spinal cages. Eur Spine J 15:133–148CrossRef
go back to reference Zadpoor AA (2015) Bone tissue regeneration: the role of scaffold geometry. Biomater Sci 3:231–245CrossRef Zadpoor AA (2015) Bone tissue regeneration: the role of scaffold geometry. Biomater Sci 3:231–245CrossRef
go back to reference Zardiackas LD, Parsell DE, Dillon LD (2001) Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res 58:180–187CrossRef Zardiackas LD, Parsell DE, Dillon LD (2001) Structure, metallurgy, and mechanical properties of a porous tantalum foam. J Biomed Mater Res 58:180–187CrossRef
go back to reference Zhang B, Liao H, Coddet C (2012) Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture. Mater Des 23:753–758CrossRef Zhang B, Liao H, Coddet C (2012) Effects of processing parameters on properties of selective laser melting Mg-9%Al powder mixture. Mater Des 23:753–758CrossRef
go back to reference Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng, R 77:1–34CrossRef Zheng YF, Gu XN, Witte F (2014) Biodegradable metals. Mater Sci Eng, R 77:1–34CrossRef
Metadata
Title
Porous Metals in Orthopedics
Authors
Karel Lietaert
Ruben Wauthle
Jan Schrooten
Copyright Year
2018
DOI
https://doi.org/10.1007/978-3-319-68025-5_10